Facial recognition software help diagnose rare genetic disease

March 23, 2017, NIH/National Human Genome Research Institute
A young boy undergoes facial recognition software for a possible diagnosis with DiGeorge syndrome, a rare disease. Credit: Paul Kruszka, et al.

Researchers with the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health, and their collaborators, have successfully used facial recognition software to diagnose a rare, genetic disease in Africans, Asians and Latin Americans. The disease, 22q11.2 deletion syndrome, also known as DiGeorge syndrome and velocardiofacial syndrome, affects from 1 in 3,000 to 1 in 6,000 children. Because the disease results in multiple defects throughout the body, including cleft palate, heart defects, a characteristic facial appearance and learning problems, healthcare providers often can't pinpoint the disease, especially in diverse populations.

The goal of the study, published March 23, 2017, in the American Journal of Medical Genetics, is to help healthcare providers better recognize and diagnose DiGeorge , deliver critical, early interventions and provide better medical care.

"Human malformation syndromes appear different in different parts of the world," said Paul Kruszka, M.D., M.P.H., a medical geneticist in NHGRI's Medical Genetics Branch. "Even experienced clinicians have difficulty diagnosing genetic syndromes in non-European populations."

The researchers studied the clinical information of 106 participants and photographs of 101 participants with the disease from 11 countries in Africa, Asia and Latin America. The appearance of someone with the disease varied widely across the groups.

Using facial analysis technology, the researchers compared a group of 156 Caucasians, Africans, Asians and Latin Americans with the disease to people without the . Based on 126 individual facial features, researchers made correct diagnoses for all ethnic groups 96.6 percent of the time.

Marius George Linguraru, D.Phil., M.A., M.B., an investigator at the Sheikh Zayed Institute for Pediatric Surgical Innovation at Children's National Health System in Washington, D.C., developed the digital facial analysis technology used in the study. Researchers hope to further develop the technology - similar to that used in airports and on Facebook - so that can one day take a cell phone picture of their patient, have it analyzed and receive a diagnosis.

This technology was also very accurate in diagnosing Down syndrome, according to a study published in December 2016. The same team of researchers will next study Noonan syndrome and Williams syndrome, both of which are rare but seen by many clinicians.

DiGeorge syndrome and Down syndrome are now part of the Atlas of Human Malformations in Diverse Populations launched by NHGRI and its collaborators in September 2016. When completed, the atlas will consist of photos of physical traits of people with many different inherited diseases around the world, including Asia, the Indian subcontinent, the Middle East, South America and sub-Saharan Africa. In addition to the photos, the atlas will include written descriptions of affected people and will be searchable by phenotype (a person's traits), syndrome, continental region of residence and genomic and molecular diagnosis. Previously, the only available diagnostic atlas featured photos of patients with northern European ancestry, which often does not represent the characteristics of these diseases in patients from other parts of the world.

"Healthcare providers here in the United States as well as those in other countries with fewer resources will be able to use the atlas and the for early diagnoses," said Maximilian Muenke, M.D., atlas co-creator and chief of NHGRI's Medical Genetics Branch. "Early diagnoses means early treatment along with the potential for reducing pain and suffering experienced by these children and their families."

Explore further: NIH creates Atlas of Human Malformation Syndromes in Diverse Populations

More information: Paul Kruszka et al. 22q11.2 deletion syndrome in diverse populations, American Journal of Medical Genetics Part A (2017). DOI: 10.1002/ajmg.a.38199

Related Stories

NIH creates Atlas of Human Malformation Syndromes in Diverse Populations

April 29, 2016
Researchers with the National Human Genome Research Institute (NHGRI), part of the National Institutes of Health, have collaborated with physicians and medical geneticists around the world to create the Atlas of Human Malformation ...

iGeorge syndrome kidney problems may be caused by missing gene

January 25, 2017
Loss of function of the CRKL gene causes kidney and urinary tract defects in people with DiGeorge syndrome, a multinational team of scientists led by Columbia University Medical Center (CUMC) has found.

Study identifies African-specific genomic variant associated with obesity

March 13, 2017
An international team of researchers has conducted the first study of its kind to look at the genomic underpinnings of obesity in continental Africans and African-Americans. They discovered that approximately 1 percent of ...

Study may show a way to predict whether children with a genetic disorder will develop autism or psychosis

July 27, 2015
Doctors and researchers have long known that children who are missing about 60 genes on a certain chromosome are at a significantly elevated risk for developing either a disorder on the autism spectrum or psychosis—that ...

Researchers create a mouse model that reproduces Noonan syndrome

November 5, 2014
Noonan syndrome is a rare disease that is characterised by a set of pathologies, including heart, facial and skeletal alterations, pulmonary stenosis, short stature, and a greater incidence of haematological problems (mainly ...

Study tracks down cause of birth defect

February 13, 2012
A USC research team has pinpointed the source of a genetic disorder that causes life-threatening birth defects, which may allow doctors to quickly diagnose and better treat the disease.

Recommended for you

Scientists identify method to study resilience to pain

December 14, 2018
Scientists at the Yale School of Medicine and Veterans Affairs Connecticut Healthcare System have successfully demonstrated that it is possible to pinpoint genes that contribute to inter-individual differences in pain.

CRISPR joins battle of the bulge, fights obesity without edits to genome

December 13, 2018
A weighty new study shows that CRISPR therapies can cut fat without cutting DNA. In a paper published Dec. 13, 2018, in the journal Science, UC San Francisco researchers describe how a modified version of CRISPR was used ...

Noncoding mutations contribute to autism risk

December 13, 2018
A whole-genome sequencing study of nearly 2,000 families has implicated mutations in 'promoter regions' of the genome—regions that precede the start of a gene—in autism. The study, which appears in the December 14 issue ...

New method for studying ALS more effectively

December 13, 2018
The neurodegenerative disease ALS causes motor neuron death and paralysis. However, long before the cells die, they lose contact with muscles as their axons atrophy. Researchers at Karolinska Institutet in Sweden have now ...

Paternal grandfather's high access to food may indicate higher mortality risk in grandsons

December 12, 2018
A paternal grandfather's access to food during his childhood is associated with mortality risk, especially cancer mortality, in his grandson, shows a large three-generational study from Stockholm University. The reason might ...

New genetic study could lead to better treatment of severe asthma

December 12, 2018
The largest-ever genetic study of people with moderate-to-severe asthma has revealed new insights into the underlying causes of the disease which could help improve its diagnosis and treatment.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.