Scientific discovery may change treatment of Parkinson's disease

March 22, 2017

When monitoring Parkinson's disease, SPECT imaging of the brain is used for acquiring information on the dopamine activity. A new study conducted in Turku, Finland, shows that the dopamine activity observed in SPECT imaging does not reflect the number of dopamine neurons in the substantia nigra, as previously assumed.

One of the most significant changes in the central nervous system in Parkinson's disease is the loss of in the substantia nigra, causing a drop in in the brain.

"Low dopamine level in the brain is linked with the central motor symptoms of Parkinson's disease, i.e. tremor or shaking, muscle stiffness and slowness of movements," says Docent of Neurology Valtteri Kaasinen from the University of Turku.

Decreased dopamine activity can be detected with a single-photon emission computed tomography (SPECT) imaging of the brain. This method is widely used in the diagnostics of Parkinson's disease in Europe and the United States.

The study conducted at the University of Turku and Turku University Hospital shows that the dopamine activity observed in SPECT imaging does not reflect the number of in the substantia nigra, contrary to what has been thought. According to Kaasinen, this is an important result as it proves that the correlation between the number of neurons and dopamine activity is not straightforward.

"This must be considered in the future when developing treatments that affect the number of neurons in the substantia nigra. It also seems that SPECT imaging is not a suitable method for monitoring treatment research results in advanced Parkinson's disease when studying treatments that affect the number of neurons in the substantia nigra," says Kaasinen.

In the study, post-mortem neuron numbers in the substantia nigra were calculated for patients with Parkinson's disease who had been examined with dopamine transporter SPECT before death. The number of neurons cannot be calculated during a patient's lifetime since the is located deep within the midbrain where biopsy is impossible in vivo.

Explore further: 'Red hair' gene variant may underlie association between melanoma and Parkinson's disease

More information: Dopamine transporter imaging does not predict the number of nigral neurons in Parkinson disease. Neurology, 10 March 2017. DOI: 10.1212/WNL.0000000000003810

Related Stories

'Red hair' gene variant may underlie association between melanoma and Parkinson's disease

March 2, 2017
A gene variant that produces red hair and fair skin in humans and in mice, which increases the risk of the dangerous skin cancer melanoma, may also contribute to the known association between melanoma and Parkinson's disease. ...

REM sleep behavior disorder is a risk factor for Parkinson's disease

July 29, 2011
Patients suffering REM sleep behaviour disorders dream nightmares in which they are attacked and pursued, with the particularity that they express them by screaming, crying, punching and kicking while sleeping. Lancet Neurology ...

How toxic proteins stress nerve cells: Biomarkers and target proteins identified in vulnerable neurons

October 14, 2014
Parkinson's Disease is the second most common neurodegenerative disorder. In Germany alone, almost half a million people are affected. The focus of the disease is the progressive degeneration of dopamine-producing nerve cells ...

Study shows how neurons decline as Parkinson's develops

April 28, 2016
It's an unsettling thought: You could be walking around for 20 years developing Parkinson's disease and not even know it.

Neurotrophic factor GDNF is an important regulator of dopamine neurons in the brain

February 16, 2017
New research results are expanding our understanding of the physiological role of the glial cell line-derived neurotrophic factor GDNF in the function of the brain's dopamine systems. In an article recently published in the ...

Intracellular dopamine receptor function may offer hope to schizophrenia patients

December 9, 2016
Dopamine is a chemical in the brain that plays an important role in controlling movement, emotion and cognition. Dopamine dysfunction is believed to be one of the causes of disorders like Schizophrenia, Tourette's syndrome, ...

Recommended for you

Scientists solve 3-D structure of key defense protein against Parkinson's disease

October 5, 2017
Scientists at the University of Dundee have identified the structure of a key enzyme that protects the brain against Parkinson's disease.

Novel protein interactions explain memory deficits in Parkinson's disease

September 26, 2017
A study published in the journal Nature Neuroscience describes the identification of a novel molecular pathway that can constitute a therapeutic target for cognitive defects in Parkinson's disease. The study showed that abnormal ...

Psychosis in Parkinson's dementia—new treatment provides hope

September 25, 2017
New research involving King's College London and the University of Exeter has highlighted the benefits of a promising new treatment which could relieve psychosis in thousands of people with dementia related to Parkinson's ...

Bicycling 'overloads' movement networks with Parkinson's

September 23, 2017
(HealthDay)—Bicycling suppresses abnormal beta synchrony in the Parkinsonian basal ganglia, according to a study published online Sept. 11 in the Annals of Neurology.

Researchers find new path to promising Parkinson's treatment

September 19, 2017
Three researchers at The University of Alabama are part of work that is leading to a new direction for drug discovery in the quest to treat Parkinson's disease.

Tug of war between Parkinson's protein and growth factor

September 18, 2017
Alpha-synuclein, a sticky and sometimes toxic protein involved in Parkinson's disease (PD), blocks signals from an important brain growth factor, Emory researchers have discovered.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.