Scientists wage fight against aging bone marrow stem cell niche

March 2, 2017
This molecular image shows immunofluorescence staining in the soft spongy section of trabecular bone in the femur of a young mouse. Red staining reveals the abundant presence of the protein osteopontin (OPN) in bone and endosteum of the marrow cavity, which is important to maintaining a healthy environment for blood-forming hematopoietic stem cells. Shown in blue are cell nuclei. Researchers report March 2 in the journal EMBO that restoring depleted osteopontin in aging bone marrow can rejuvenate the production of HSCs. The image was taken by Mehmet Sacma, Institute of Molecular Medicine, University of Ulm, Germany. Credit: University of Ulm

As people get older so do the hematopoietic stem cells (HSCs) that form their blood, creating an increased risk for compromised immunity and certain blood cancers. Now researchers are reporting in the scientific journal EMBO that the bone marrow niche where HSC's form also ages, contributing to the problem.

In a study published March 2, scientists from the University of Ulm in Germany and Cincinnati Children's Hospital Medical Center in the United States propose rejuvenating the niche where HSCs are created. This could mean younger acting HSCs that form healthier blood , boosted immunity in older people, and a better defense mechanism against certain cancers, according to study authors.

Conducting their study in mouse models, the scientists point to cells in the bone marrow called osteoblasts, which help form bone. Osteoblasts make a protein called osteopontin, which is important to supporting a vibrant bone marrow environment in the creation of blood-forming HSCs.

"We show that the place where HSCs form in the bone marrow loses osteopontin upon aging, but if you give back the missing protein to the blood-forming cells they suddenly rejuvenate and act younger," says Hartmut Geiger, PhD, study lead investigator at the Institute for Molecular Medicine and Aging Research Center at the University of Ulm, and the Division of Experimental Hematology and Cancer Biology at Cincinnati Children's. "Our study points to exciting novel ways to have a better immune system and possibly less blood cancer upon aging by therapeutically targeting the place where form."

Because the study was in mice, its findings cannot at this stage be extended to clinical treatment of human patients, the authors say. But the data provide interesting leads that one day could benefit human health.

Bone marrow time warp

The researchers conducted a number of experiments to test the formation and vitality of cells in and near the bone marrow microenvironment. One test in aging mice looked at the formation of endosteum stroma cells, which form a thin layer of connective tissue on the inner surface of bones. Another experiment monitored levels of osteopontin and other proteins linked to distinct cells in bone marrow during the aging process.

Study authors say they observed reduced production of osteoblasts and other stroma cells in the endosteum of older mice. They also saw decreased osteopontin protein levels in the bone marrow of older animals, which they note was associated with reduced vigor and function of blood-forming HSCs.

Reversing the niche aging process

Scientists followed up the earlier experiments by transplanting from older mice (19-21 months) into young mice (8 to 10 weeks). In two other experiments, the authors also transplanted aged HSCs from older mice into younger mice, and they treated aged HSCs with a recombinant form of the osteopontin protein.

Transplantation into the younger animals caused cells to act in a younger more vital manner, the authors report. This includes the presence of smaller numbers of HSCs with greater potential for forming different types of blood cells, which included larger populations of B and T cells and smaller production of myeloid cells.

The authors also saw aged HSCs treated with recombinant osteopontin regain their youthful characteristics and capacity to form different blood-cell types. Also observed was diminished signaling of the protein Cdc42, a protein that Geiger and his team previously showed causes HSCs to age.

Osteopontin levels are not only low in the bone marrow niche, but also in the blood upon aging. As a follow up to the current study, the researchers are investigating the possibility to use osteopontin replacement therapy in mice to counter the influence of an aging niche directly in the animals.

Explore further: Changing the environment within bone marrow alters blood cell development

More information: EMBO, emboj.embopress.org/cgi/doi/10 … 15252/embj.201694969

Related Stories

Changing the environment within bone marrow alters blood cell development

February 22, 2017
Researchers at the University of Illinois report they can alter blood cell development through the use of biomaterials designed to mimic characteristics of the bone marrow.

Dose of transplanted blood-forming stem cells affects their behavior

May 25, 2016
Unlike aspirin, bone marrow doesn't come with a neatly printed label with dosage instructions. However, a new study published in Cell Reports provides clues about how the dose of transplanted bone marrow might affect patients ...

Blood stem cells study could pave the way for new cancer therapy

March 10, 2016
People with leukaemia could be helped by new research that sheds light on how the body produces its blood supply.

Study uncovers key player contributing to healthy maintenance of bone marrow niche

February 17, 2016
A study led by scientists from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS) has uncovered a key player contributing to the maintenance of hematopoietic stem cells ...

Blood stem cells age at the unexpected flip of a molecular switch

October 20, 2013
Scientists report in Nature they have found a novel and unexpected molecular switch that could become a key to slowing some of the ravages of getting older as it prompts blood stem cells to age.

Common chemical highly toxic to blood cell precursors

June 24, 2016
Malaysian scientists have provided evidence that a widely used chemical is more toxic to certain blood cell precursors in the bone marrow than to others.

Recommended for you

Researchers describe mechanism that underlies age-associated bone loss

September 22, 2017
A major health problem in older people is age-associated osteoporosis—the thinning of bone and the loss of bone density that increases the risk of fractures. Often this is accompanied by an increase in fat cells in the ...

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.