Ladies, this is why fertility declines with age

April 3, 2017

Researchers at the University of Montreal Hospital Research Center (CRCHUM) have discovered a possible new explanation for female infertility. Thanks to cutting-edge microscopy techniques, they observed for the first time a specific defect in the eggs of older mice. This defect may also be found in the eggs of older women. The choreography of cell division goes awry, and causes errors in the sharing of chromosomes. These unprecedented observations are being published today in Current Biology.

"We found that the microtubules that orchestrate during cell division behave abnormally in older . Instead of assembling a spindle in a controlled symmetrical fashion, the microtubules go in all directions. The altered movement of the microtubules apparently contributes to errors in chromosome segregation, and so represents a for age-related infertility," stated CRCHUM researcher and Université de Montréal professor Greg FitzHarris.

Women—and other female mammals—are born with a fixed number of eggs, which remain dormant in the ovaries until the release of a single egg per menstrual cycle. But for women, fertility declines significantly at around the age of 35.

"One of the main causes of female infertility is a defect in the eggs that causes them to have an abnormal number of . These so-called aneuploid eggs become increasingly prevalent as a woman ages. This is a key reason that have trouble getting pregnant and having full-term pregnancies. It is also known that these defective eggs increase the risk of miscarriage and can cause Down's syndrome in full-term babies" explained FitzHarris.

Scientists previously believed that eggs are more likely to be aneuploid with age because the "glue" that keeps the chromosomes together works poorly in older eggs. This is known as the "cohesion-loss" hypothesis.

"Our work doesn't contradict that idea, but shows the existence of another problem: defects in the microtubules, which cause defective spindles and in doing so seem to contribute to a specific type of chromosome segregation error" asserted Professor FitzHarris.

The video will load shortly.
Chromosome segregation in mouse eggs. The spindle is labelled in green, and the chromosomes are labelled in red. Researchers at the University of Montreal Hospital Research Center (CRCHUM) have discovered a possible new explanation for female infertility. Age-related female infertility is explained by a defect in the choreography of chromosome sharing during cell division in eggs before they are fertilized. Credit: Greg FitzHarris laboratory, CRCHUM

Microtubules are tiny cylindrical structures that organize themselves to form a spindle. This complex biological machine gathers the chromosomes together and sorts them at the time of cell division, then sends them to the opposite poles of the daughter cells in a process called chromosome segregation.

"In mice, approximately 50% of the eggs of older females have a spindle with chaotic dynamics" declared FitzHarris.

The researchers conducted a series of micromanipulations on the eggs of mice between the ages of 6 and 12 weeks (young) and 60-week-old mice (old). "We swapped the nuclei of the young eggs with those of the old eggs and we observed problems in the old eggs containing a young nucleus," explained Shoma Nakagawa, a postdoctoral research fellow at the CRCHUM and at the Université de Montréal. "This shows that maternal age influences the alignment of microtubules independently of the age of the chromosomes contained in the nuclei of each egg."

Greg FitzHarris's team notes that spindle defects are also a problem in humans. In short, the cellular machinery works less efficiently in aged eggs, but this is not caused by the age of the chromosomes.

This discovery may one day lead to new fertility treatments to help women become pregnant and carry a pregnancy to term. "We are currently exploring possible treatments for eggs that might one day make it possible to reverse this problem and rejuvenate the eggs," explained FitzHarris.

Many more years of research will be needed before getting to this point. But understanding the precisely orchestrated choreography that unfolds within each egg during will eventually allow us to correct the errors, to ensure the production of healthy eggs that can be fertilized.

The article Intrinsically defective microtubule dynamics contribute to age-related chromosome segregation errors in mouse oocyte meiosis-I was published on April 3, 2017 in Current Biology.

Explore further: Solving the mystery of defective embryos

More information: Current Biology, http://www.cell.com/current-biology/fulltext/S0960-9822(17)30162-8 , DOI: 10.1016/j.cub.2017.02.025

Related Stories

Solving the mystery of defective embryos

January 4, 2016
It's the dream of many infertile couples: to have a baby. Tens of thousands of children are born by in vitro fertilization, or IVF, a technique commonly used when nature doesn't take its course. However, embryos obtained ...

Recommended for you

Study reveals connection between microbiome and autoimmune disorders

October 23, 2017
Many people associate the word "bacteria" with something dirty and disgusting. Dr. Pere Santamaria disagrees. Called the microbiome, the bacteria in our bodies have all kinds of positive effects on our health, Santamaria ...

Engineered protein treatment found to reduce obesity in mice, rats and primates

October 19, 2017
(Medical Xpress)—A team of researchers with pharmaceutical company Amgen Inc. report that an engineered version of a protein naturally found in the body caused test mice, rats and cynomolgus monkeys to lose weight. In their ...

New procedure enables cultivation of human brain sections in the petri dish

October 19, 2017
Researchers at the University of Tübingen have become the first to keep human brain tissue alive outside the body for several weeks. The researchers, headed by Dr. Niklas Schwarz, Dr. Henner Koch and Dr. Thomas Wuttke at ...

Cancer drug found to offer promising results in treating sepsis in test mice

October 19, 2017
(Medical Xpress)—A combined team of researchers from China and the U.S. has found that a drug commonly used to treat lung cancer in humans offers a degree of protection against sepsis in test mice. In their paper published ...

Tracing cell death pathway points to drug targets for brain damage, kidney injury, asthma

October 19, 2017
University of Pittsburgh scientists are unlocking the complexities of a recently discovered cell death process that plays a key role in health and disease, and new findings link their discovery to asthma, kidney injury and ...

Study reveals key molecular link in major cell growth pathway

October 19, 2017
A team of scientists led by Whitehead Institute has uncovered a surprising molecular link that connects how cells regulate growth with how they sense and make available the nutrients required for growth. Their work, which ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.