Researchers identify mechanism that regulates acoustic habituation

April 11, 2017, University of Western Ontario

Most people will startle when they hear an unexpected loud sound. The second time they hear the noise, they'll startle significantly less; by the third time, they'll barely startle at all. This ability is called acoustic habituation, and new Western-led research has identified the underlying molecular mechanism that controls this capability. The research opens the door to treatments, especially for people who have autism spectrum disorder or schizophrenia and who experience disruptions in this ability.

Susanne Schmid, PhD, associate professor at Western's Schulich School of Medicine & Dentistry, and principal investigator on the study explains that acoustic is a common form of sensory filtering, which refers to the brain's ability to block out extraneous sounds, feelings or visual information so that we are able to focus on what's most important in our surroundings. Disruption in was added as a diagnostic marker for only in the most recent version of the Diagnostic and Statistical Manual of Mental Disorders (DSM5).

Using electrophysiology and pharmacological tools, the research has shown that a potassium channel, specifically the BK channel, in the central nervous system can be regulated with drugs to increase or decrease these disruptions in animal models.

"By doing this we are better able to understand what's going wrong in people that do not habituate," said Schmid. "It also means we might be able to improve habituation by targeting this mechanism and thereby improve their sensory filtering."

Schmid says enhancing habituation and sensory filtering in spectrum disorder and schizophrenia might have beneficial effects not only on hyper- and hyposensitivity, but also on cognitive function.

The research was published in The Journal of Neuroscience and was funded by an operating grant from the Canadian Institutes of Health Research and the Ontario Mental Health Foundation.

Explore further: Sorting out risk genes for brain development disorders

More information: Tariq Zaman et al, BK Channels Mediate Synaptic Plasticity Underlying Habituation in Rats, The Journal of Neuroscience (2017). DOI: 10.1523/JNEUROSCI.3699-16.2017

Related Stories

Sorting out risk genes for brain development disorders

February 23, 2017
Gene discovery research is uncovering new information about similarities and differences underlying various neurodevelopmental disorders.

Genomewide screen of learning in zebrafish identifies enzyme important in neural circuit

March 23, 2015
Researchers at the Perelman School of Medicine at the University of Pennsylvania describe the first set of genes important in learning in a zebrafish model in the journal Neuron this week. "Using an in-depth analysis of one ...

Scientists pinpoint sensory links between autism and synesthesia

March 7, 2017
Concrete links between the symptoms of autism and synaesthesia have been discovered and clarified for the first time, according to new research by psychologists at the University of Sussex.

Autism-linked protein crucial for feeling pain

December 1, 2016
Sensory problems are common to autism spectrum disorders. Some individuals with autism may injure themselves repetitively—for example, pulling their hair or banging their heads—because they're less sensitive to pain than ...

Groundbreaking model explains how the brain learns to ignore familiar stimuli

June 18, 2014
A neuroscientist from Trinity College Dublin has proposed a new, ground-breaking explanation for the fundamental process of 'habituation', which has never been completely understood by neuroscientists.

Scientists find molecular trigger of schizophrenia-like behaviors and brain changes

April 7, 2015
Scientists at The Scripps Research Institute (TSRI) have identified a molecule in the brain that triggers schizophrenia-like behaviors, brain changes and global gene expression in an animal model. The research gives scientists ...

Recommended for you

Forty percent of people have a fictional first memory, says study

July 17, 2018
Researchers have conducted one of the largest surveys of people's first memories, finding that nearly 40 per cent of people had a first memory which is fictional.

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

Insight without incision: Advances in noninvasive brain imaging offers improvements to epilepsy surgery

July 17, 2018
About a third of epilepsy sufferers require treatment through surgery. To check for severe epilepsy, clinicians use a surgical procedure called electrocorticography (ECoG). An ECoG maps a section of brain tissue to help clinicians ...

New drug target for remyelination in MS is identified

July 17, 2018
Remyelination, the spontaneous regeneration of the fatty insulator in the brain that keeps neurons communicating, has long been seen as crucial to the next big advance in treating multiple sclerosis (MS). However, a lack ...

Artificial neural networks now able to help reveal a brain's structure

July 17, 2018
The function of the brain is based on the connections between nerve cells. In order to map these connections and to create the connectome, the "wiring diagram" of a brain, neurobiologists capture images of the brain with ...

Convergence of synaptic signals is mediated by a protein critical for learning and memory

July 16, 2018
Inside the brain, is a complex symphony of perfectly coordinated signaling. Hundreds of different molecules amplify, modify and carry information from tiny synaptic compartments all the way through the entire length of a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.