A moldable scaffold for bone

April 7, 2017 by Mary L. Martialay
This bioactive foam can be easily shaped to fit gaps in skull bone caused by injury, surgery, or birth defect, and will be replaced by the body's own bone over time. Credit: Texas A&M University

A team including researchers at Rensselaer Polytechnic Institute is developing a new material that can be used to replace skull bone lost to injury, surgery, or birth defect. The bioactive foam is malleable when exposed to warm saline, allowing surgeons to easily shape it to fit irregular defects in the skull, where it hardens in place. Once implanted in the skull, specially coated pores within the foam attract bone cells, naturally regenerating bone to replace the foam, which dissolves over time.

The foam—a shape memory polymer coated in a bioactive polydopamine—is intended as an alternative to materials currently used to treat cranio-maxillofacial gaps. Most commonly, such gaps are filled with a graft surgically harvested from the patient, such as from the hip. Such rigid bone grafts are often difficult to harvest, and cannot be readily manipulated to fit within irregularly shaped bone defects, compromising healing.

The research is supported by a four-year $1.9 million grant from the National Institutes of Health (NIH), and is led by Texas A&M University associate professor Melissa Grunlan, who developed the foam.

"This is like trying to fill in a missing puzzle piece with the wrong piece," Grunlan said. "These bone defects can cause tremendous functional problems and aesthetic issues for individuals, so it was recognized that a better treatment would make a big impact."

Mariah Hahn, a Rensselaer professor of biomedical engineering and an expert in bone tissue engineering, will test various formulations of the foam in vitro, recommending the most successful formulations for further pre-clinical testing, and providing insights on why some foams are more or less successful in promoting .

"We want to find the ideal formulation that maintains the amazing properties of the foam while providing the optimal environment for stimulating new bone formation," said Hahn, a member of the Rensselaer Center for Biotechnology and Interdisciplinary Studies.

The research draws upon Hahn's expertise in bone formation and bone tissue engineering in evaluating the materials and proposing next steps to optimize the formulations. Hahn's research focuses on understanding cell-to-cell and cell-to-material interactions at a fundamental level. The Hahn Tissue Lab specializes in development of tissue-engineered replacements for diseased small-caliber arteries and osteochondral tissues, and in regeneration of chronically scarred tissue. The lab is also involved in the development of tissue-engineered disease models.

The project began about five years ago, and has already shown good biocompatibility in preliminary tests in small animal models. Many more years of refinement and testing are required before a product reaches surgeons as a treatment option. However, said Hahn, the approach has a number of advantages, particularly when contrasted with other options under research, such as 3-D printing methods.

"A moldable bone-promoting scaffold could have broad use if it's successful," said Hahn. "It takes advantages of the body's own healing ability, and it's a low-cost, 'off the shelf' solution that would not need to be pre-tailored to the individual defect."

Hahn and Grunlan are joined in their research by Texas A&M researchers Dr. W. Brian Saunders and Dr. Roy Pool in the College of Veterinary Medicine and Biomedical Sciences, and Michael Moreno, a professor of mechanical engineering.

Hahn's research is enabled by the vision of The New Polytechnic, an emerging paradigm for higher education which recognizes that global challenges and opportunities are so great they cannot be adequately addressed by even the most talented person working alone. Rensselaer serves as a crossroads for collaboration—working with partners across disciplines, sectors, and geographic regions—to address complex global challenges, using the most advanced tools and technologies, many of which are developed at Rensselaer. Research at Rensselaer addresses some of the world's most pressing technological challenges—from energy security and sustainable development to biotechnology and human health. The New Polytechnic is transformative in the global impact of research, in its innovative pedagogy, and in the lives of students at Rensselaer.

Explore further: Diet and back pain: What's the link?

Related Stories

Diet and back pain: What's the link?

August 23, 2016
Can a diet high in processed fat and sugar and Type 2 diabetes cause degeneration of intervertebral discs in the spine? If so, what is happening, and can it be prevented? As part of an ongoing collaboration between Rensselaer ...

New study compares bone-inducing properties of 3-D-printed mineralized scaffolds

February 13, 2017
A new study of bone formation from stem cells seeded on 3D-printed bioactive scaffolds combined with different mineral additives showed that some of the scaffold mineral composites induced bone-forming activity better than ...

New material regrows bone: Procedure could potentially treat patients with injuries to the skull

March 8, 2017
A team of researchers repaired a hole in a mouse's skull by regrowing "quality bone," a breakthrough that could drastically improve the care of people who suffer severe trauma to the skull or face.

Recommended for you

Researchers develop treatment to reduce rate of cleft palate relapse complication

September 22, 2017
Young people with cleft palate may one day face fewer painful surgeries and spend less time undergoing uncomfortable orthodontic treatments thanks to a new therapy developed by researchers from the UCLA School of Dentistry. ...

Exosomes are the missing link to insulin resistance in diabetes

September 21, 2017
Chronic tissue inflammation resulting from obesity is an underlying cause of insulin resistance and type 2 diabetes. But the mechanism by which this occurs has remained cloaked, until now.

Thousands of new microbial communities identified in human body

September 20, 2017
A new study of the human microbiome—the trillions of microbial organisms that live on and within our bodies—has analyzed thousands of new measurements of microbial communities from the gut, skin, mouth, and vaginal microbiome, ...

Study finds immune system is critical to regeneration

September 20, 2017
The answer to regenerative medicine's most compelling question—why some organisms can regenerate major body parts such as hearts and limbs while others, such as humans, cannot—may lie with the body's innate immune system, ...

Immune cells produce wound healing factor, could lead to new IBD treatment

September 20, 2017
Specific immune cells have the ability to produce a healing factor that can promote wound repair in the intestine, a finding that could lead to new, potential therapeutic treatments for inflammatory bowel disease (IBD), according ...

As men's weight rises, sperm health may fall

September 20, 2017
(HealthDay)—A widening waistline may make for shrinking numbers of sperm, new research suggests.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.