Study reveals how learning in the present shapes future learning

April 6, 2017
Topography of the primary motor cortex, on an outline drawing of the human brain. Different body parts are represented by distinct areas, lined up along a fold called the central sulcus. Credit: public domain

Neurons in the prefrontal cortex "teach" neurons in the hippocampus to "learn" rules that distinguish memory-based predictions in otherwise identical situations, suggesting that learning in the present helps guide learning in the future, according to research conducted at the Icahn School of Medicine at Mount Sinai and published April 5 in the journal Neuron.

The study, led by Matthew Shapiro, PhD, Professor of Neuroscience at the Icahn School of Medicine at Mount Sinai, investigated memory flexibility and interference, the mechanisms by which the brain interprets events and anticipates their likely outcomes. The is a temporal lobe brain structure needed for remembering recent events: for example, where you ate your last meal. The is where the brain uses context to switch flexibility between remembered rules, such as knowing to look left before crossing a street in North America but right before crossing in Britain. Without such rules, memories interfere with one another and predictions based on memory are inaccurate.

High-functioning individuals rapidly integrate memories with goals to choose their course of action. This cognitive flexibility requires interaction between the prefrontal cortex and hippocampus. Previous research indicates that interactions between these two brain regions are disrupted in many neuropsychiatric conditions, including schizophrenia, depression, and attention deficit disorder, but the mechanisms of these interactions have largely remained a mystery.

"We want to understand how our brains learn to think ahead and the mechanisms that use context to recall events, predict outcomes and inform decisions. For example, how does the brain know to answer a ringing telephone at home but not in someone else's house? " says Dr. Shapiro. "We found that 'rules' signaled by the 'teach' the hippocampus to distinguish goals, as learned to switch from one goal to another. We already knew that hippocampal cells predicted memory decisions through prospective coding, firing at different rates before rats chose different goals. We learned that inactivating the prefrontal cortex reduced prospective coding by the hippocampus. Furthermore, the more the prefrontal cortex altered hippocampal activity as rats learned one rule, the faster they switched to the next rule."

The research team tested spatial memory in rats using a plus-shaped maze in a task that depends on hippocampal function. The rats were trained to walk from the far end of a start arm (North or South) through a choice point to the end of one of two goal arms (West or East) to find hidden food. After the rat returned reliably to the rewarded spatial goal from each of the two start arms (e.g. "go East"), the opposite goal was rewarded and the animals had to learn a rule reversal (e.g. "go West"). The research team found that intact rats learned an initial goal and performed roughly three reversals each day, while rats with prefrontal cortex dysfunction learned only the initial goal; rats with hippocampal dysfunction learned none. This observation suggested that the prefrontal cortex might teach the hippocampus to differentiate goal-related memories.

To test this hypothesis, researchers placed micro-electrodes into both the prefrontal cortex and hippocampus and recorded the activity of ensembles of single neurons in both structures during learning and stable memory performance in the plus-shaped maze.

Because both brain regions were recorded simultaneously, the research team could test whether activity in one region changed before or at the same time as the other during different phases of learning and memory, as rats learned to approach one goal and switch to another.

"We found that neuronal activity was synchronized in the two structures, and that neurons in the prefrontal cortex modulated hippocampal place cell activity during learning," says Dr. Shapiro. "Prefrontal cortical and hippocampal cell activity predicted imminent choices, as though both structures were contributing to spatial retrieval."

They also found that the prefrontal cortex most strongly altered hippocampal place cell activity during reversals, just before a rat learned to reliably select a new . Moreover, the strength of the prefrontal modulation of hippocampal activity predicted how quickly the rats learned the next reversal. In other words, the more that the hippocampus "learned" what the prefrontal cortex "taught," the faster the rat learned the next rule.

Functional magnetic resonance imaging studies show how specific structures within the prefrontal cortex interact to use contextual information and modify emotional responses. These prefrontal dynamics are reduced in people suffering from depression and recover when depressive symptoms remit.

The new mechanisms uncovered by this study will likely improve our understanding of and inform new treatments for psychiatric conditions that involve hippocampal and prefrontal interactions. Ongoing research is investigating whether the same mechanisms described in this study are at play between the hippocampus and other prefrontal structures.

Explore further: Too much activity in certain areas of the brain is bad for memory and attention

Related Stories

Too much activity in certain areas of the brain is bad for memory and attention

August 23, 2016
Neurons in the brain interact by sending each other chemical messages, so-called neurotransmitters. Gamma-aminobutyric acid (GABA) is the most common inhibitory neurotransmitter, which is important to restrain neural activity, ...

Neuroscientists identify brain circuit necessary for memory formation

April 6, 2017
When we visit a friend or go to the beach, our brain stores a short-term memory of the experience in a part of the brain called the hippocampus. Those memories are later "consolidated"—that is, transferred to another part ...

Brain's connections that keep related memories distinct identified in new study

January 20, 2017
Neuroscientists at the University of Bristol are a step closer to understanding how the connections in our brain which control our episodic memory work in sync to make some memories stronger than others. The findings, published ...

Entorhinal cortex acts independently of the hippocampus in remembering movement, study finds

January 12, 2017
Until now, the hippocampus was considered the most important brain region for forming and recalling memory, with other regions only contributing as subordinates. But a study published today in Science finds that a brain region ...

Neuroscientist explores mechanism that can cause deficit in working memory

September 11, 2014
Amy Griffin, associate professor of psychological and brain sciences at the University of Delaware, has received a five-year, $1.78 million grant from the National Institute of Mental Health to support her research into the ...

Recommended for you

Brain activity buffers against worsening anxiety

November 17, 2017
Boosting activity in brain areas related to thinking and problem-solving may also buffer against worsening anxiety, suggests a new study by Duke University researchers.

Investigating patterns of degeneration in Alzheimer's disease

November 17, 2017
Alzheimer's disease (AD) is known to cause memory loss and cognitive decline, but other functions of the brain can remain intact. The reasons cells in some brain regions degenerate while others are protected is largely unknown. ...

Study may point to new treatment approach for ASD

November 17, 2017
Using sophisticated genome mining and gene manipulation techniques, researchers at Vanderbilt University Medical Center (VUMC) have solved a mystery that could lead to a new treatment approach for autism spectrum disorder ...

Neuroscientists find chronic stress skews decisions toward higher-risk options

November 16, 2017
Making decisions is not always easy, especially when choosing between two options that have both positive and negative elements, such as deciding between a job with a high salary but long hours, and a lower-paying job that ...

Paraplegic rats walk and regain feeling after stem cell treatment

November 16, 2017
Engineered tissue containing human stem cells has allowed paraplegic rats to walk independently and regain sensory perception. The implanted rats also show some degree of healing in their spinal cords. The research, published ...

Brain implant tested in human patients found to improve memory recall

November 15, 2017
(Medical Xpress)—A team of researchers with the University of Southern California and the Wake Forest School of Medicine has conducted experiments involving implanting electrodes into the brains of human volunteers to see ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.