RUNX1 may play role in proliferative diabetic retinopathy

<i>RUNX1</i> may play role in proliferative diabetic retinopathy

(HealthDay)—The Runt-related transcription factor 1 (RUNX1) gene may play a role in human proliferative diabetic retinopathy (PDR), and upregulation may be a marker of aberrant retinal angiogenesis, according to a study published online April 11 in Diabetes.

Noting that PDR affects those with type 1 and 2 diabetes, and is a common cause of blindness in the developed world, Jonathan D. Lam, M.D., from the Schepens Eye Research Institute in Boston, and colleagues examined the role of RUNX1 in PDR.

The researchers identified RUNX1 as a gene that was upregulated in CD31+ vascular obtained via transcriptomic analysis from human PDR fibrovascular membranes (FVM). Increased RUNX1 RNA and protein expression were seen in response to high glucose in in-vitro studies using human retinal microvascular endothelial cells (HRMECs); HRMEC migration, proliferation, and tube formation were reduced with RUNX1 inhibition. Using immunohistochemical staining for RUNX1, reactivity was seen in vessels of patient-derived FVM and angiogenic tufts in the retina of mice with oxygen-induced retinopathy. Use of the Ro5-3335 small molecule to inhibit RUNX1 activity resulted in significant reduction of neovascular tufts in oxygen-induced .

"These findings, including the high glucose-dependent expression of RUNX1, identify a novel pathway of potential therapeutic interest, and implicate RUNX1 in aberrant angiogenesis in multiple conditions," the authors write.

Several authors have filed a provisional patent application on RUNX1 regulation for the treatment of aberrant angiogenesis and .

More information: Abstract/Full Text (subscription or payment may be required)

Journal information: Diabetes

Copyright © 2017 HealthDay. All rights reserved.

Citation: RUNX1 may play role in proliferative diabetic retinopathy (2017, April 17) retrieved 16 April 2024 from https://medicalxpress.com/news/2017-04-runx1-role-proliferative-diabetic-retinopathy.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Researchers identify new target for abnormal blood vessel growth in the eyes

0 shares

Feedback to editors