Engineered bone marrow could make transplants safer

May 8, 2017, University of California - San Diego
Engineered bone with functional marrow. Credit: Varghese lab, UC San Diego

Engineers at the University of California San Diego have developed biomimetic bone tissues that could one day provide new bone marrow for patients needing transplants.

Bone marrow transplants are used to treat patients with . Before a transplant, a patient is first given doses of radiation, sometimes in combination with drugs, to kill off any existing stem cells in the patient's marrow. This pre-treatment is meant to improve success of the transplant by clearing up space in the marrow, allowing donor cells to survive and grow without competition from the patient's own cells. But this treatment often comes with harmful side effects, such as nausea, fatigue, loss of fertility and others.

To address these issues, a team led by bioengineering professor Shyni Varghese at the UC San Diego Jacobs School of Engineering has developed a bone-like implant that gives donor cells their own space to live and grow without competition, eliminating the need to wipe out the host's pre-existing cells.

"We've made an accessory bone that can separately accommodate donor cells. This way, we can keep the host cells and bypass irradiation," Varghese said.

Researchers developed bone tissues with functional bone marrow that can be filled with donor cells and implanted under the skin of mice. The donor cells survived for at least six months and supplied the mice with new blood cells. Varghese and her team published their work on May 8 in PNAS.

"In the future, our work could contribute to improved therapies for bone marrow disease," said Yu-Ru (Vernon) Shih, a research scientist in Varghese's lab and the study's first author.

Left: Cartoon illustration of long bone structure. Center: Image of engineered bone with marrow. Right: High magnification images of bone tissue (top) and marrow cells (bottom). Credit: Varghese lab, UC San Diego

Varghese cautions that these implants would be limited to patients with non-malignant bone marrow diseases, where there aren't any cancerous cells that need to be eliminated. Examples include aplastic anemia, in which the body can't make enough platelets and blood cells, as well as low blood counts and immune attack of the bone marrow caused by defective or abnormal bone marrow stem cells.

The implants mimic the structure of long bones in the body, consisting of an outer bone compartment and an inner marrow compartment. The implants are made of a porous hydrogel matrix. The outer matrix contains calcium phosphate minerals. Stem cells grown in this mineralized matrix differentiate into bone-building cells. The inner matrix houses donor stem cells that produce blood cells.

When implanted beneath the skin of mice, the structures matured into bone tissues that have a working blood vessel network and a bone marrow inside that supplies new blood cells. After four weeks, researchers found that the implanted marrow contained a mix of host and donor . They also found this mix circulating in the bloodstream of these mice even after 24 weeks.

According to researchers, these findings are significant because they indicate that: the implanted marrow is functional; cells can grow and survive for long time periods in the presence of host cells; and that host and can travel between the implanted marrow and the host's circulating blood—via the vessel network formed in the implanted bone tissue.

In another set of experiments, researchers took stem cells from the implanted marrow and transplanted them into a second group of mice that had their marrow stem cells destroyed by radiation and drugs. They found that the transplanted cells had diffused into the bloodstream of these mice. "We did these experiments to show that the from the engineered bone tissues function similar to native bone," Shih said.

"We're working on making this a platform to generate more stem . That would have useful applications for cell transplantations in the clinic," Varghese said.

Explore further: Changing the environment within bone marrow alters blood cell development

More information: Yu-Ru Shih el al., "In vivo engineering of bone tissues with hematopoietic functions and mixed chimerism," PNAS (2017). www.pnas.org/cgi/doi/10.1073/pnas.1702576114

Related Stories

Changing the environment within bone marrow alters blood cell development

February 22, 2017
Researchers at the University of Illinois report they can alter blood cell development through the use of biomaterials designed to mimic characteristics of the bone marrow.

New findings may help overcome hurdle to successful bone marrow transplantation

May 28, 2013
Blood diseases such as leukemia, multiple myeloma, and myelodysplasia can develop from abnormal bone marrow cells and a dysfunctional bone marrow microenvironment that surrounds these cells. Until now, researchers have been ...

New finding on the formation of fat tissue in man

July 16, 2015
While all red and white blood cells derive from stem cells in the bone marrow, the scientific community has been divided over whether bone marrow cells are also able to produce other cell types. In the present study, the ...

Researchers develop new strategy to limit side effects of stem cell transplants

August 15, 2016
Scientists in Germany have developed a new approach that may prevent leukemia and lymphoma patients from developing graft-versus-host disease (GvHD) after therapeutic bone marrow transplants. The researchers describe the ...

Blood stem cells study could pave the way for new cancer therapy

March 10, 2016
People with leukaemia could be helped by new research that sheds light on how the body produces its blood supply.

Dose of transplanted blood-forming stem cells affects their behavior

May 25, 2016
Unlike aspirin, bone marrow doesn't come with a neatly printed label with dosage instructions. However, a new study published in Cell Reports provides clues about how the dose of transplanted bone marrow might affect patients ...

Recommended for you

A Trojan Horse delivery for treating a rare, potentially deadly, blood-clotting disorder

September 21, 2018
In proof-of-concept experiments, University of Alabama at Birmingham researchers have highlighted a potential therapy for a rare but potentially deadly blood-clotting disorder, TTP. The researchers deliver this therapeutic ...

Japanese team creates human oogonia using human stem cells in artificial mouse ovaries

September 21, 2018
A team of researchers with members from several institutions in Japan has successfully generated human oogonia inside of artificial mouse ovaries using human stem cells. In their paper published in the journal Science, the ...

Researchers explore how changes in diet alter microbiome in artificial intestine

September 21, 2018
Using an artificial intestine they created, researchers have shown that the microbiome can quickly adapt from the bacterial equivalent of a typical western diet to one composed exclusively of dietary fats. That adaptation ...

A new approach to developing a vaccine against vivax malaria

September 21, 2018
A novel study reports an innovative approach for developing a vaccine against Plasmodium vivax, the most prevalent human malaria parasite outside sub-Saharan Africa. The study led by Hernando A. del Portillo and Carmen Fernandez-Becerra, ...

Study identifies stem cell that gives rise to new bone and cartilage in humans

September 20, 2018
A decade-long effort led by Stanford University School of Medicine scientists has been rewarded with the identification of the human skeletal stem cell.

Scientists grow human esophagus in lab

September 20, 2018
Scientists working to bioengineer the entire human gastrointestinal system in a laboratory now report using pluripotent stem cells to grow human esophageal organoids.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.