Common antioxidant could slow symptoms of aging in human skin

May 30, 2017, University of Maryland
These cross-section images show three-dimensional human skin models made of living skin cells. Untreated model skin (left panel) shows a thinner dermis layer (black arrow) compared with model skin treated with the antioxidant methylene blue (right panel). A new study suggests that methylene blue could slow or reverse dermal thinning (a sign of aging) and a number of other symptoms of aging in human skin. Credit: Zheng-Mei Xiong/University of Maryland

New work from the University of Maryland suggests that a common, inexpensive and safe chemical could slow the aging of human skin. The researchers found evidence that the chemical—an antioxidant called methylene blue—could slow or reverse several well-known signs of aging when tested in cultured human skin cells and simulated skin tissue. The study was published online in the journal Scientific Reports on May 30, 2017.

"Our work suggests that methylene blue could be a powerful antioxidant for use in ," said Kan Cao, senior author on the study and an associate professor of cell biology and molecular genetics at UMD. "The effects we are seeing are not temporary. Methylene blue appears to make fundamental, long-term changes to ."

The researchers tested methylene blue for four weeks in from healthy middle-aged donors, as well as those diagnosed with progeria—a rare genetic disease that mimics the normal aging process at an accelerated rate. In addition to methylene blue, the researchers also tested three other known antioxidants: N-Acetyl-L-Cysteine (NAC), MitoQ and MitoTEMPO (mTEM).

In these experiments, methylene blue outperformed the other three antioxidants, improving several age-related symptoms in cells from both healthy donors and progeria patients. The skin cells (fibroblasts, the cells that produce the structural protein collagen) experienced a decrease in damaging molecules known as reactive oxygen species, a reduced rate of cell death and an increase in the rate of cell division throughout the four-week treatment.

Next, Cao and her colleagues tested methylene blue in fibroblasts from older donors (>80 years old) again for a period of four weeks. At the end of the treatment, the cells from older donors had experienced a range of improvements, including decreased expression of two genes commonly used as indicators of cellular aging: senescence-associated beta-galactosidase and p16.

"I was encouraged and excited to see skin fibroblasts, derived from individuals more than 80 years old, grow much better in methylene blue-containing medium with reduced cellular senescence markers," said Zheng-Mei Xiong, lead author of the study and an assistant research professor of cell biology and molecular genetics at UMD. "Methylene blue demonstrates a great potential to delay skin aging for all ages."

The researchers then used simulated (a system developed by Cao and Xiong) to perform several more experiments. This simulated skin—a three-dimensional model made of living skin cells—includes all the major layers and structures of skin tissue, with the exception of hair follicles and sweat glands. The model skin could also be used in skin irritation tests required by the Food and Drug Administration for the approval of new cosmetic products, Cao said.

"This system allowed us to test a range of aging symptoms that we can't replicate in cultured cells alone," Cao said. "Most surprisingly, we saw that model skin treated with methylene blue retained more water and increased in thickness—both of which are features typical of younger skin."

The researchers also used the model skin to test the safety of cosmetic creams with methylene blue added. The results suggest that methylene blue causes little to no irritation, even at high concentrations. Encouraged by these results, Cao, Xiong and their colleagues hope to develop safe and effective ways for consumers to benefit from the properties of methylene blue.

"We have already begun formulating cosmetics that contain . Now we are looking to translate this into marketable products," Cao said. "We are also very excited to develop the three-dimensional skin model system. Perhaps down the road we can customize the system with bioprinting, such that we might be able to use a patient's own cells to provide a tailor-made testing platform specific to their needs."

The research paper, "Anti-Aging Potentials of Methylene Blue for Human Skin Longevity," Zheng-Mei Xiong, Mike O'Donovan, Linlin Sun, Ji Young Choi, Margaret Ren and Kan Cao, was published online in the journal Scientific Reports on May 30, 2017.

Explore further: Safe, inexpensive chemical found to reverse symptoms of progeria in human cells

More information: Zheng-Mei Xiong et al, Anti-Aging Potentials of Methylene Blue for Human Skin Longevity, Scientific Reports (2017). DOI: 10.1038/s41598-017-02419-3

Related Stories

Safe, inexpensive chemical found to reverse symptoms of progeria in human cells

December 10, 2015
Progeria is a rare genetic disease that mimics the normal aging process at an accelerated rate. Symptoms typically appear within the first year of life, and individuals with the disease develop thin, wrinkled skin, fragile ...

Methylene blue shows promise for improving short-term memory

June 28, 2016
A single oral dose of methylene blue results in an increased MRI-based response in brain areas that control short-term memory and attention, according to a new study published online in the journal Radiology.

Memory-enhancing drug may improve exposure therapy for PTSD patients

November 3, 2011
A memory-enhancing drug may improve the speed and effectiveness of prolonged exposure therapy for post-traumatic stress disorder (PTSD) patients, according to a new pilot study by psychologists at The University of Texas ...

Researchers decipher modus operandi of potential Alzheimer's drug

February 20, 2013
The chemical compound known as "methylene blue" is a potential candidate for treating Alzheimer's, as it prevents the harmful clumping of so-called tau proteins typically associated with this disease. However, until now it ...

Sunlight offers surprise benefit—it energizes infection fighting T cells

December 20, 2016
Sunlight allows us to make vitamin D, credited with healthier living, but a surprise research finding could reveal another powerful benefit of getting some sun.

Reprogrammable skin stem cells in a test tube could reduce number of animal experiments

December 20, 2016
To develop new treatments for skin cancer, drugs need to be tested on animals. Now scientists from the Max Planck Institute for Biology of Ageing in Cologne have been able to grow mouse skin stem cells in a dish. These stem ...

Recommended for you

A Trojan Horse delivery for treating a rare, potentially deadly, blood-clotting disorder

September 21, 2018
In proof-of-concept experiments, University of Alabama at Birmingham researchers have highlighted a potential therapy for a rare but potentially deadly blood-clotting disorder, TTP. The researchers deliver this therapeutic ...

Japanese team creates human oogonia using human stem cells in artificial mouse ovaries

September 21, 2018
A team of researchers with members from several institutions in Japan has successfully generated human oogonia inside of artificial mouse ovaries using human stem cells. In their paper published in the journal Science, the ...

A new approach to developing a vaccine against vivax malaria

September 21, 2018
A novel study reports an innovative approach for developing a vaccine against Plasmodium vivax, the most prevalent human malaria parasite outside sub-Saharan Africa. The study led by Hernando A. del Portillo and Carmen Fernandez-Becerra, ...

Researchers explore how changes in diet alter microbiome in artificial intestine

September 21, 2018
Using an artificial intestine they created, researchers have shown that the microbiome can quickly adapt from the bacterial equivalent of a typical western diet to one composed exclusively of dietary fats. That adaptation ...

Study identifies stem cell that gives rise to new bone and cartilage in humans

September 20, 2018
A decade-long effort led by Stanford University School of Medicine scientists has been rewarded with the identification of the human skeletal stem cell.

Scientists grow human esophagus in lab

September 20, 2018
Scientists working to bioengineer the entire human gastrointestinal system in a laboratory now report using pluripotent stem cells to grow human esophageal organoids.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.