Researchers use CRISPR to develop a Ewing sarcoma stem cell model

May 11, 2017, Centro Nacional de Investigaciones Oncológicas (CNIO)
Credit: CNIO

A team from the Spanish National Cancer Research Centre (CNIO) has optimized a system capable of generating a cellular model of Ewing sarcoma. The technique, based on CRISPR and described in the pages of Stem Cell Reports, makes it possible to generate cellular models to analyse the mechanisms underlying the origin and progression of this and other diseases, as well as the search for new treatments.

CRISPR, the famous genomic editing technique, not only serves to cure diseases, it can also recreate diseases in cellular models to study the molecular events that give rise to them. These models are crucial to find new diagnostic and therapeutic pathways. In a paper published in the journal Stem Cell Reports, the authors present a significant technological development capable of recreating Ewing sarcoma in adult and embryonic human stem .

"The idea is to have a system that enables us to generate a that is as accurate as possible to what is happening in a tumour," said Sandra Rodríguez Perales from the Molecular Cytogenetics and Genomic Engineering Unit and leader of the research project.

With a model that reproduces the origins of the disease, it will be possible to analyse the underlying mechanisms and molecular bases of each pathology. In the case of Ewing sarcoma, the trigger of the disease is a translocation between chromosomes 11 and 22, which gives rise to the fusion of two genes, resulting in a new oncogene.

The authors had already used CRISPR to induce this alteration and generate a model of the disease, but they encountered a low level of efficacy and other methodological difficulties in applying the technique to human stem cells. "When we were working with cell lines, everything went smoothly, but when we applied it to stem cells, we came across a lot of problems," explains Raúl Torres Ruiz, co-author of the paper.

To improve the results and to refine the technique, they compared three strategies to generate this translocation in the most efficient way possible using CRISPR. After several experiments, they noted that by combining the use of a sgRNA-Cas9 ribonucleoprotein complex generated in the laboratory (in place of a plasmid expression) and of a DNA "staple"—a short sequence that connects the ends of two chromosomes that breaks the CRISPR system and therefore facilitates translocation—the success rate increased by up to seven times. This suggests that the researchers have found "a solid tool to induce targeted translocations."

All the improvements implemented during the study have resulted in a model of induced (iPSC) with enormous potential from a scientific point of view. They constitute an ideal for the study of the development of various pathologies, among them the initial stages of oncogenic processes. All this will allow the study of the mechanistic bases of pathologies such as Ewing sarcoma.

In addition, it is also "a valid approximation for other pathologies," said Rodríguez Perales. "This strategy will facilitate the creation of cancer models from human stem cells and accurate genome editing to search for new drugs or cellular therapies, thus accelerating the advance from the laboratory to the clinic."

Explore further: Tumor chromosomal translocations reproduced for the first time in human cells

More information: Raul Torres-Ruiz et al, Efficient Recreation of t(11;22)EWSR1-FLI1 +in Human Stem Cells Using CRISPR/Cas9, Stem Cell Reports (2017). DOI: 10.1016/j.stemcr.2017.04.014

Related Stories

Tumor chromosomal translocations reproduced for the first time in human cells

June 3, 2014
Scientists from the Spanish National Cancer Research Centre (CNIO) and the Spanish National Cardiovascular Research Centre (CNIC) have been able to reproduce, for the first time in human cells, chromosomal translocations ...

Scientists create novel model that shows progression from normal blood cells to leukemia

February 16, 2017
Mount Sinai researchers have created a novel model that shows the step-by-step progression from normal blood cells to leukemia and its precursor diseases, creating replicas of the stages of the disease to test the efficacy ...

Scientists show how mutation causes incurable premature aging disease

October 31, 2016
Scientists have demonstrated how a mutation in a specific protein in stem cells causes an incurable premature aging disease called dyskeratosis congenita, and were able to introduce the mutation into cultured human cells ...

CAR T cells more powerful when built with CRISPR, researchers find

February 22, 2017
Researchers from Memorial Sloan Kettering Cancer Center (MSK) have harnessed the power of CRISPR/Cas9 to create more-potent chimeric antigen receptor (CAR) T cells that enhance tumor rejection in mice. The unexpected findings, ...

A noncoding RNA promotes pediatric bone cancer

November 17, 2014
Ewing sarcoma is a cancer of bone or its surrounding soft tissue that primarily affects children and young adults. A hallmark of Ewing sarcoma is a translocation event that results in the fusion of an RNA binding protein, ...

Recommended for you

Standard chemotherapy treatment for HPV-positive throat cancer remains the most effective, study finds

November 15, 2018
A new study funded by Cancer Research UK and led by the University of Birmingham has found that the standard chemotherapy used to treat a specific type of throat cancer remains the most effective.

New 'SLICE' tool can massively expand immune system's cancer-fighting repertoire

November 15, 2018
Immunotherapy can cure some cancers that until fairly recently were considered fatal. In addition to developing drugs that boost the immune system's cancer-fighting abilities, scientists are becoming expert at manipulating ...

DICE: Immune cell atlas goes live

November 15, 2018
Compare any two people's DNA and you will find millions of points where their genetic codes differ. Now, scientists at La Jolla Institute for Immunology (LJI) are sharing a trove of data that will be critical for deciphering ...

Ashkenazi Jewish founder mutation identified for Leigh Syndrome

November 15, 2018
Over 30 years ago, Marsha and Allen Barnett lost their sons to a puzzling childhood disease that relentlessly attacked their nervous systems and sapped their energy. After five-year-old Chuckie died suddenly in 1981, doctors ...

Drug candidate may recover vocal abilities lost to ADNP syndrome

November 15, 2018
Activity-dependent neuroprotective protein syndrome (ADNP syndrome) is a rare genetic condition that causes developmental delays, intellectual disability and autism spectrum disorder symptoms in thousands of children worldwide. ...

Anti-malaria drugs have shown promise in treating cancer, and now researchers know why

November 15, 2018
Anti-malaria drugs known as chloroquines have been repurposed to treat cancer for decades, but until now no one knew exactly what the chloroquines were targeting when they attack a tumor. Now, researchers from the Abramson ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.