Researchers use CRISPR to develop a Ewing sarcoma stem cell model

A protein, a 'molecular staple' and CRISPR to develop an Ewing sarcoma model
Credit: CNIO

A team from the Spanish National Cancer Research Centre (CNIO) has optimized a system capable of generating a cellular model of Ewing sarcoma. The technique, based on CRISPR and described in the pages of Stem Cell Reports, makes it possible to generate cellular models to analyse the mechanisms underlying the origin and progression of this and other diseases, as well as the search for new treatments.

CRISPR, the famous genomic editing technique, not only serves to cure diseases, it can also recreate diseases in cellular models to study the molecular events that give rise to them. These models are crucial to find new diagnostic and therapeutic pathways. In a paper published in the journal Stem Cell Reports, the authors present a significant technological development capable of recreating Ewing sarcoma in adult and embryonic human stem .

"The idea is to have a system that enables us to generate a that is as accurate as possible to what is happening in a tumour," said Sandra Rodríguez Perales from the Molecular Cytogenetics and Genomic Engineering Unit and leader of the research project.

With a model that reproduces the origins of the disease, it will be possible to analyse the underlying mechanisms and molecular bases of each pathology. In the case of Ewing sarcoma, the trigger of the disease is a translocation between chromosomes 11 and 22, which gives rise to the fusion of two genes, resulting in a new oncogene.

The authors had already used CRISPR to induce this alteration and generate a model of the disease, but they encountered a low level of efficacy and other methodological difficulties in applying the technique to human stem cells. "When we were working with cell lines, everything went smoothly, but when we applied it to stem cells, we came across a lot of problems," explains Raúl Torres Ruiz, co-author of the paper.

To improve the results and to refine the technique, they compared three strategies to generate this translocation in the most efficient way possible using CRISPR. After several experiments, they noted that by combining the use of a sgRNA-Cas9 ribonucleoprotein complex generated in the laboratory (in place of a plasmid expression) and of a DNA "staple"—a short sequence that connects the ends of two chromosomes that breaks the CRISPR system and therefore facilitates translocation—the success rate increased by up to seven times. This suggests that the researchers have found "a solid tool to induce targeted translocations."

All the improvements implemented during the study have resulted in a model of induced (iPSC) with enormous potential from a scientific point of view. They constitute an ideal for the study of the development of various pathologies, among them the initial stages of oncogenic processes. All this will allow the study of the mechanistic bases of pathologies such as Ewing sarcoma.

In addition, it is also "a valid approximation for other pathologies," said Rodríguez Perales. "This strategy will facilitate the creation of cancer models from human stem cells and accurate genome editing to search for new drugs or cellular therapies, thus accelerating the advance from the laboratory to the clinic."

More information: Raul Torres-Ruiz et al, Efficient Recreation of t(11;22)EWSR1-FLI1 +in Human Stem Cells Using CRISPR/Cas9, Stem Cell Reports (2017). DOI: 10.1016/j.stemcr.2017.04.014

Journal information: Stem Cell Reports
Provided by Centro Nacional de Investigaciones Oncológicas (CNIO)
Citation: Researchers use CRISPR to develop a Ewing sarcoma stem cell model (2017, May 11) retrieved 19 March 2024 from https://medicalxpress.com/news/2017-05-crispr-ewing-sarcoma-stem-cell.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Tumor chromosomal translocations reproduced for the first time in human cells

18 shares

Feedback to editors