Deciphering an embryo-protecting protein

May 10, 2017, Hokkaido University
Comparison of a HLA-G1 protein (left) and a HLA-G2 protein (right), showing significant structural difference. The HLA-G2 protein shown here is in a pair form called homodimer. Credit: Kuroki K. et al., The Journal of Immunology, March 27, 2017

Revelations about a protein expressed in fetal cells could provide novel insights into its function and future immunosuppressive therapies.

Researchers at Hokkaido University together with colleagues in Japan have uncovered the structure of a protein that protects embryos from being attacked by their mothers' immune system. Further understanding of this protein could give rise to .

Trophoblasts are found in the outer layer of the developing embryo that form part of the placenta. They express a type of protein called human leukocyte antigens-G (HLA-G) which interacts with receptors on the maternal cells to suppress immune responses to the embryo during pregnancy.

The structures of HLA-G1, the major form of HLA-G, are well understood. Interestingly, individuals whose cells lack HLA-G1 could be born and healthy. Researchers believe this is because they can express another form, HLA-G2, which should compensate for the loss of the former's function. But the structure of HLA-G2 has been largely unknown.

In a study published in the Journal of Immunology, the team investigated the structure of HLA-G2 by a single particle electron microscopy.

Surprisingly, the structure of HLA-G2 was completely different from HLA-G1, but was similar to another class of human leukocyte antigens called HLA class II. This suggests that the HLA-G gene evolved from the same ancestral gene as HLA class II.

They also found that HLA-G2 make pairs called homodimers which strengthen the binding to the receptors. HLA-G1 is also known to form homodimers but in a different manner. Furthermore, their biochemical analysis revealed that HLA-G2 bound strongly to a leukocyte immunoglobulin-like receptor B2 (LILRB2), but not to LILRB1. By contrast, HLA-G1 binds strongly to both .

Previous research by the Hokkaido University team showed that, in addition to its protective role during pregnancy, the HLA-G2 had an anti-inflammatory effect when injected into collagen-induced arthritis mice.

"A narrower target specificity of HLA-G2 could be advantageous in developing with less side-effects. We suggest further investigations to elucidate the of the HLA-receptor complex for a more precise understanding of this interaction," says Katumi Maenaka, the corresponding author at Hokkaido University.

Explore further: The ryanodine receptor—calcium channel in muscle cells

More information: Kimiko Kuroki et al. Cutting Edge: Class II–like Structural Features and Strong Receptor Binding of the Nonclassical HLA-G2 Isoform Homodimer, The Journal of Immunology (2017). DOI: 10.4049/jimmunol.1601296

Related Stories

The ryanodine receptor—calcium channel in muscle cells

December 2, 2014
Whenever muscles contract, so-called ryanodine receptors come into play. Calcium ions, which are ultimately responsible for the contraction of muscle cells, are released from storage organs and flow through these ion channels. ...

Crystal structure reveals how minor variations make receptor proteins activate or inhibit natural killer cells

August 27, 2014
Natural killer (NK) cells are white blood cells that can detect and destroy abnormal cells, including cancer cells or cells infected by viruses. A*STAR researchers have now resolved a longstanding puzzle concerning the receptor ...

Scientists uncover the structure of a protein complex linked with breast and ovarian cancer risk

January 11, 2017
Scientists at the Francis Crick Institute have described the molecular structure of a key tumour suppressor protein and provided insights into its role in cells.

Recommended for you

Our intestinal microbiome influences metabolism—through the immune system

June 21, 2018
Research tells us that the commensal or "good" bacteria that inhabit our intestines help to regulate our metabolism. A new study in fruit flies, published June 21 in Cell Metabolism, shows one surprising way they do this.

Human immune 'trigger' map paves way for better treatments

June 21, 2018
A discovery about how human cells are 'triggered' to undergo an inflammatory type of cell death could have implications for treating cancer, stroke and tissue injury, and immune disorders.

Fetal T cells are first responders to infection in adults

June 20, 2018
Cornell University researchers have discovered there is a division of labor among immune cells that fight invading pathogens in the body.

How a thieving transcription factor dominates the genome

June 20, 2018
One powerful DNA-binding protein, the transcription factor PU.1, steals away other transcription factors and recruits them for its own purposes, effectively dominating gene regulation in developing immune cells, according ...

Composition of complex sugars in breast milk may prevent future food allergies

June 12, 2018
The unique composition of a mother's breastmilk may help to reduce food sensitization in her infant, report researchers at the University of California San Diego School of Medicine with colleagues in Canada.

Drug may quell deadly immune response when trauma spills the contents of our cells' powerhouses

June 11, 2018
When trauma spills the contents of our cell powerhouses, it can evoke a potentially deadly immune response much like a severe bacterial infection.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.