Engineering human stem cells to model the kidney's filtration barrier on a chip

May 10, 2017 by Benjamin Boettner, Harvard University
Scanning electron micrograph shows a human stem cell-derived matured podocyte with multiple primary and secondary processes extending in all directions on extracellular matrix-coated material. Credit: Wyss Institute at Harvard University

The kidney - made up of about a million tiny units that work to filter blood, constantly rids the body of undesired waste products to form urine while holding back blood cells and valuable proteins, and controls the body's fluid content. Key to each of these units is a structure known the 'glomerulus', in which so-called podocyte cells wrap themselves tightly around a tuft of capillaries separated from them only by a thin membrane composed of extracellular matrix, and leaving slits between them to build an actual filtration barrier. Podocytes are also the target of many congenital or acquired kidney diseases, and they are often harmed by drugs.

To build an in vitro model of the human glomerulus that could allow probing deeper into its function, as well as its vulnerabilities to disease and drug toxicities, researchers have been attempting to engineer human stem cells—that in theory can give rise to any mature cell type—so that they form into functional podocytes. These cell culture efforts, however, so far have failed to produce populations of mature podocytes pure enough as to be useful for modeling glomerular filtration.

A team led by Donald Ingber, M.D., Ph.D., at Harvard's Wyss Institute of Biologically Inspired Engineering now reports a solution to this challenge in Nature Biomedical Engineering, which enables the differentiation of human induced pluripotent stem (iPS) cells into mature podocytes with more than 90% efficiency. Linking the differentiation process with organ-on-a-chip technology pioneered by his team, the researchers went on to engineer the first in vitro model of the human glomerulus, demonstrating effective and selective filtration of blood proteins and podocyte toxicity induced by a chemotherapy drug in vitro. Ingber is the Wyss Institute's Founding Director, the Judah Folkman Professor of Vascular Biology at Harvard Medical School (HMS) and the Vascular Biology Program at Boston Children's Hospital, as well as Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS).

"The development of a functional human kidney glomerulus chip opens up an entire new experimental path to investigate kidney biology, carry out highly personalized modeling of kidney diseases and drug toxicities, and the stem cell-derived kidney podocytes we developed could even offer a new injectable cell therapy approach for regenerative medicine in patients with life-threatening glomerulopathies in the future," said Ingber.

Ingber's team has engineered multiple organs-on-chips that accurately mimic human tissue and organ-level physiology and that are currently being evaluated by the Food and Drug Administration (FDA) as a tool to more effectively study the effects of potential chemical and biological hazards found in foods, cosmetics or dietary supplements than existing culture systems or animal models. In 2013, his team developed an organ-on-a-chip microfluidic culture device that modeled the human kidney's proximal tubule, which is anatomically connected to the glomerulus and salvages ions from urinary fluid. Now, with the team's newly engineered human kidney glomerulus-on-a-chip, researchers also can get in vitro access to the kidney's core filtration mechanisms that are critical for drug clearance and pharmacokinetics, in addition to studying human podocytes at work.

To generate almost pure populations of human podocytes in cell culture, Samira Musah, Ph.D., the study's first author and HMS Dean's Postdoctoral Fellow who is working with Ingber at the Wyss Institute, leveraged pieces of the stem cell biologists' arsenal, and merged them with snippets taken from Ingber's past research on how cells in the body respond to adhesive factors and physical forces in their tissue environments.

"Our method not only uses soluble factors that guide kidney development in the embryo, but, by growing and differentiating stem cells on extracellular matrix components that are also contained in the membrane separating the glomerular blood and urinary systems, we more closely mimic the natural environment in which podocytes are induced and mature," said Musah. "We even succeeded in inducing much of this differentiation process within a channel of the microfluidic chip, where by applying cyclical motions that mimic the rhythmic deformations living glomeruli experience due to pressure pulses generated by each heart beat, we achieve even greater maturation efficiencies."

The complete microfluidic system closely resembles a living, three-dimensional cross-section of the human glomerular wall. It consists of an optically clear, flexible, polymeric material the size of a computer memory chip in which two closely opposed microchannels are separated by a porous, extracellular matrix-coated membrane that corresponds to the kidney's glomerular basement membrane. In one of the membrane-facing channels, the researchers grow glomerular endothelial cells to mimic the blood microvessel compartment of glomeruli. The iPS cells are cultured on the opposite side of the membrane in the other channel that represents the glomerulus' urinary compartment, where they are induced to form a layer of mature podocytes that extend long cellular processes through the pores in the membrane and contact the underlying endothelial . In addition, the device's channels are rhythmically stretched and relaxed at a rate of one heart beat per second by applying cyclic suction to hollow chambers placed on either side of the cell-lined microchannels to mimic physiological deformations of the glomerular wall.

"This in vitro system allows us to effectively recapitulate the filtration of small substances contained in blood into the urinary compartment while retaining large proteins in the blood compartment just like in our bodies, and we can visualize and monitor the damage inflicted by drugs that cause break-down of the filtration barrier in the kidney," said Musah.

Explore further: iPS-derived kidney cells successfully connected to capillary network

More information: Samira Musah et al. Mature induced-pluripotent-stem-cell-derived human podocytes reconstitute kidney glomerular-capillary-wall function on a chip, Nature Biomedical Engineering (2017). DOI: 10.1038/s41551-017-0069

Related Stories

iPS-derived kidney cells successfully connected to capillary network

November 19, 2015
In a world first, Kumamoto University researchers have shown mouse kidney capillaries successfully connecting to kidney tissue which was derived from human iPS cells. This achievement shows that human kidney glomeruli made ...

Scientists bioprint tubular 3-D renal architecture that recapitulates functions of the kidney

October 11, 2016
Toward the ultimate goal of engineering human tissues and organs that can mimic native function for use in drug screening, disease modeling, and regenerative medicine, a Wyss Institute team led by Core Faculty member Jennifer ...

Reverse engineering human biology with organs-on-chips

March 10, 2016
"Organs-on-Chips," added last May to the collection of the Museum of Modern Art in New York City and winner of the 2015 Design Award from the London Design Museum, have kept their "classical" design over the years, but have ...

New high-throughput screening method may uncover novel treatments for kidney disease

April 9, 2015
A newly developed assay may help investigators identify novel drug candidates to protect kidney cells and prevent or treat chronic kidney disease (CKD). The advance is described in an upcoming issue of the Journal of the ...

Diabetic kidney disease is decoded, offering new avenues for diagnosis and treatment

February 23, 2017
Diabetes is a leading cause of kidney disease, a serious, often fatal complication that is difficult to diagnose in early, potentially treatable stages. Now, a research team at the Icahn School of Medicine at Mount Sinai ...

Recommended for you

New compound shown to be as effective as FDA-approved drugs against life-threatening infections

June 15, 2018
Purdue University researchers have identified  a new compound that in preliminary testing has shown itself to be as effective as antibiotics approved by the Food and Drug Administration to treat life-threatening infections ...

Foods combining fats and carbohydrates more rewarding than foods with just fats or carbs

June 14, 2018
Researchers show that the reward center of the brain values foods high in both fat and carbohydrates—i.e., many processed foods—more than foods containing only fat or only carbs. A study of 206 adults, to appear June ...

3-D imaging and computer modeling capture breast duct development

June 14, 2018
Working with hundreds of time-lapse videos of mouse tissue, a team of biologists joined up with civil engineers to create what is believed to be the first 3-D computer model to show precisely how the tiny tubes that funnel ...

Beating cancer at its own game with a Trojan horse telomerase

June 13, 2018
Telomerase is a reverse transcriptase that uses an RNA template to synthesize telomeres. These repeat sequences bind special proteins that fold the ends of chromosomes back onto themselves to create a stable cap. When this ...

Turning the tables on the cholera pathogen

June 13, 2018
Recent cholera outbreaks in regions that are ravaged by war, struck by natural disasters, or simply lack basic sanitation, such as Yemen or Haiti, are making the development of new and more effective interventions a near-term ...

Troves from a search for new biomarkers: blood-borne RNA

June 12, 2018
It's the critical first step in treating everything from strokes to cancer: a timely and accurate diagnosis. Today, doctors often rely on biomarkers, such as cardiac troponin, the protein that appears in the blood after a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.