Neurons can learn temporal patterns

May 29, 2017, Lund University
Credit: CC0 Public Domain

Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals. This is what emerges from a study at Lund University in Sweden.

"It is like striking a piano key with a finger not just once, but as a programmed series of several keystrokes," says neurophysiology researcher Germund Hesslow.

The work constitutes basic research, but has a bearing on the development of neural networks and artificial intelligence as well as research on learning. Autism, ADHD and language disorders in children, for example, may be associated with disruptions in these and other basic learning mechanisms.

Learning is commonly thought to be based on strengthening or weakening of the contacts between the brain's neurons. The Lund researchers have previously shown that a cell can also learn a timed association, so that it sends a signal with a certain learned delay. Now, it seems that a neuron can be trained not only to give a single response, but a whole complex series of several responses.

The brain's learning capacity is greater than previously thought

"This means that the brain's capacity for learning is even greater than previously thought!" says Germund Hesslow's colleague Dan-Anders Jirenhed. He thinks that, in the future, artificial with "trained neurons" could be capable of managing more complex tasks in a more efficient way.

The Lund researchers' study focuses on the ' capacity for associative learning and temporal learning. In the experiments, the learned during several hours of training to associate two different signals. If the delay between the signals was a quarter of a second, the cells learned to respond after a quarter of a second. If the interval was half a second, the cells responded after half a second, and so on.

The researchers now show that the cells can learn not only one, but several reactions in a series. "Signal – brief pause - signal – long pause - signal" gives rise to a series of responses with exactly the same intervals of time: "response – brief pause – response - long pause - response".

The cells studied by the researchers are called Purkinje cells and are located in the cerebellum. The cerebellum is the part of the brain that controls bodily position, balance and movement. It also plays an important role in learning long of complicated movements which require precise timing, such as the movements of the hands and fingers when playing the piano.

Explore further: New learning mechanism for individual nerve cells

More information: Dan-Anders Jirenhed et al. Learned response sequences in cerebellar Purkinje cells, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1621132114

Related Stories

New learning mechanism for individual nerve cells

September 30, 2014
The traditional view is that learning is based on the strengthening or weakening of the contacts between the nerve cells in the brain. However, this has been challenged by new research findings from Lund University in Sweden. ...

The brain forgets in order to conserve energy

October 27, 2015
Our brains not only contain learning mechanisms but also forgetting mechanisms that erase "unnecessary" learning. A research group at Lund University in Sweden has now been able to describe one of these mechanisms at the ...

Scientists study Pavlovian conditioning in neural networks

March 22, 2017
In the decades following the work by physiologist Ivan Pavlov and his famous salivating dogs, scientists have discovered how molecules and cells in the brain learn to associate two stimuli, like Pavlov's bell and the resulting ...

During learning, neurons deep in brain engage in a surprising level of activity

March 21, 2017
It's the part of the brain that makes sure you cannot tickle yourself. The cerebellum, an apple-sized region near the base of the skull, senses that your own fingers are the ones trying to tickle, and cancels your usual response.

Neural networks learn to link temporally dispersed stimuli

March 8, 2016
Rustling leaves, a creaking branch: To a mouse, these sensory impressions may at first seem harmless - but not if a cat suddenly bursts out of the bush. If so, they were clues of impending life-threatening danger. Robert ...

Recommended for you

Do you see what I see? Researchers harness brain waves to reconstruct images of what we perceive

February 22, 2018
A new technique developed by neuroscientists at the University of Toronto Scarborough can, for the first time, reconstruct images of what people perceive based on their brain activity gathered by EEG.

Neuroscientists discover a brain signal that indicates whether speech has been understood

February 22, 2018
Neuroscientists from Trinity College Dublin and the University of Rochester have identified a specific brain signal associated with the conversion of speech into understanding. The signal is present when the listener has ...

Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018
Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis ...

Biomarker, clues to possible therapy found in novel childhood neurogenetic disease

February 22, 2018
Researchers studying a rare genetic disorder that causes severe, progressive neurological problems in childhood have discovered insights into biological mechanisms that drive the disease, along with early clues that an amino ...

A look at the space between mouse brain cells

February 22, 2018
Between the brain's neurons and glial cells is a critical but understudied structure that's been called neuroscience's final frontier: the extracellular space. With a new imaging paradigm, scientists can now see into and ...

Nolan film 'Memento' reveals how the brain remembers and interprets events from clues

February 22, 2018
Key repeating moments in the film give viewers the information they need to understand the storyline. The scenes cause identical reactions in the viewer's brain. The results deepen our understanding of how the brain functions, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.