Novel tissue-engineered islet transplant achieves insulin independence in type 1 diabetes

May 11, 2017, Diabetes Research Institute Foundation
Fluorescence microscopy of islets in the omentum transplanted within the biologic scaffold.In red (insulin staining) and blue (DAPI nuclear staining). Credit: Diabetes Research Institute/University of Miami Miller School of Medicine

Scientists from the Diabetes Research Institute (DRI) at the University of Miami Miller School of Medicine have produced the first clinical results demonstrating that pancreatic islet cells transplanted within a tissue-engineered platform can successfully engraft and achieve insulin independence in type 1 diabetes. The findings, published in the May 11 issue of the New England Journal of Medicine, are part of an ongoing clinical study to test this novel strategy as an important step toward offering this life-changing cell replacement therapy to millions living with the disease.

Islet transplantation has demonstrated the ability to restore natural insulin production and eliminate severe hypoglycemia in people with type 1 diabetes. The have traditionally been implanted within the liver, but this transplant site poses some limitations for emerging applications, leading researchers to investigate other options. DRI scientists have focused on the omentum, an apron-like tissue covering abdominal organs, which is easily accessed with minimally invasive surgery and has the same blood supply and physiological drainage characteristics as the pancreas.

"The objective of testing this novel tissue-engineered platform is to initially determine that insulin-producing cells can function in this new site, and subsequently introduce additional technologies towards our ultimate goal to replace the pancreatic endocrine function lost in type 1 diabetes without the need for anti-rejection drugs, what we call the DRI BioHub," explains Camillo Ricordi, M.D., director of the DRI and the Stacy Joy Goodman Professor of Surgery, Distinguished Professor of Medicine, Professor of Biomedical Engineering, Microbiology and Immunology at the University of Miami Miller School. Dr. Ricordi also serves as director of the DRI's Cell Transplant Center.

This was the first successful tissue-engineered "mini pancreas" that has achieved long-term in a patient with type 1 diabetes. The biological platform was made by combining donor islets with the patient's own (autologous) blood plasma, which was laparoscopically layered onto the omentum. Clinical-grade thrombin was then layered over the islet/plasma mixture. Together, these substances create a gel-like material that sticks to the omentum and holds the islets in place. Over time, the body will absorb the gel, leaving the islets intact. The technique has been designed to minimize the inflammatory reaction that is normally observed when islets are implanted in the liver or in other sites with immediate contact to blood. The DRI's clinical trial, an important first step toward developing the BioHub mini organ, includes the immunosuppressive regimen currently used for clinical islet transplantation studies.

"The results thus far have shown that the omentum appears to be a viable site for islet implantation using this new platform technique," said lead author David Baidal, M.D., Assistant Professor of Medicine and member of the DRI's Clinical Cell Transplant team. "Data from our study and long-term follow up of additional omental islet transplants will determine the safety and feasibility of this strategy of , but we are quite excited about what we are seeing now."

In type 1 diabetes, the insulin-producing cells of the pancreas have been mistakenly destroyed by the immune system, requiring patients to manage their blood sugar levels through a daily regimen of insulin therapy. Islet transplantation has allowed many patients to live without the need for insulin injections after receiving a transplant of donor . Some patients who have received transplants at the DRI have been insulin independent for more than a decade, as DRI researchers have published.

Explore further: Mini-organ would mimic pancreas to treat type 1 diabetes

More information: Bioengineering of an Intraabdominal Endocrine Pancreas, New England Journal of Medicine (2017). www.nejm.org/doi/full/10.1056/NEJMc1613959

Related Stories

Mini-organ would mimic pancreas to treat type 1 diabetes

March 5, 2013
(HealthDay)— A new bioengineered, miniature organ dubbed the BioHub might one day offer people with type 1 diabetes freedom from their disease.

Cell study offers more diabetic patients chance of transplant

August 29, 2013
Diabetic patients could benefit from a breakthrough that enables scientists to take cells from the pancreas and change their function to produce insulin.

New procedure could improve success rate of cell transplant to cure type 1 diabetes

April 4, 2016
New research suggests pretreating cells with a peptide hormone may improve the success rate of pancreatic islet cell transplants, a procedure that holds great promise for curing Type 1 diabetes. The results will be presented ...

Artificial pancreas therapy performs well in pilot study

November 20, 2015
Researchers are reporting a breakthrough toward developing an artificial pancreas as a treatment for diabetes and other conditions by combining mechanical artificial pancreas technology with transplantation of islet cells, ...

Pancreatic islets infusion for diabetes patient being readied for procedure in Japan

May 16, 2012
The Japanese Pancreas and Islet Transplantation Association (JPITA) is preparing for the nation's first transplantation of pancreatic islets from a brain-dead donor to a patient with Type 1 diabetes, it was learned Saturday.

Recommended for you

Implantable islet cells come with their own oxygen supply

April 25, 2018
Since the 1960s, researchers have been interested in the possibility of treating type 1 diabetes by transplanting islet cells—the pancreatic cells that are responsible for producing insulin when blood glucose concentration ...

Bariatric surgery successes lead to type 2 diabetes treatment

April 24, 2018
Bariatric surgery has long yielded almost immediate health benefits for patients with type 2 diabetes, and new findings on the reasons for remission may be the key to developing drug alternatives to surgery.

Hacking human 'drug trafficking' network could make diabetes treatments more effective

April 23, 2018
Making tiny changes to existing diabetes treatments can alter how they interact with cells, and potentially make the medicines more effective.

Vitamin D deficiency linked to greater risk of diabetes

April 19, 2018
An epidemiological study conducted by researchers at University of California San Diego School of Medicine and Seoul National University suggests that persons deficient in vitamin D may be at much greater risk of developing ...

One class of drug used to treat type 2 diabetes may not reduce the risk of death when compared with placebo

April 17, 2018
One class of drug used to treat type 2 diabetes may not reduce the risk of death when compared with placebo, suggests new findings.

People with Type 2 diabetes who eat breakfast later, more likely to have a higher BMI

April 16, 2018
Being an "evening person" is linked to higher body mass indices among people with Type 2 diabetes, and having breakfast later in the day seems to be what drives this association, according to a new paper in the journal Diabetic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.