Novel tissue-engineered islet transplant achieves insulin independence in type 1 diabetes

May 11, 2017
Fluorescence microscopy of islets in the omentum transplanted within the biologic scaffold.In red (insulin staining) and blue (DAPI nuclear staining). Credit: Diabetes Research Institute/University of Miami Miller School of Medicine

Scientists from the Diabetes Research Institute (DRI) at the University of Miami Miller School of Medicine have produced the first clinical results demonstrating that pancreatic islet cells transplanted within a tissue-engineered platform can successfully engraft and achieve insulin independence in type 1 diabetes. The findings, published in the May 11 issue of the New England Journal of Medicine, are part of an ongoing clinical study to test this novel strategy as an important step toward offering this life-changing cell replacement therapy to millions living with the disease.

Islet transplantation has demonstrated the ability to restore natural insulin production and eliminate severe hypoglycemia in people with type 1 diabetes. The have traditionally been implanted within the liver, but this transplant site poses some limitations for emerging applications, leading researchers to investigate other options. DRI scientists have focused on the omentum, an apron-like tissue covering abdominal organs, which is easily accessed with minimally invasive surgery and has the same blood supply and physiological drainage characteristics as the pancreas.

"The objective of testing this novel tissue-engineered platform is to initially determine that insulin-producing cells can function in this new site, and subsequently introduce additional technologies towards our ultimate goal to replace the pancreatic endocrine function lost in type 1 diabetes without the need for anti-rejection drugs, what we call the DRI BioHub," explains Camillo Ricordi, M.D., director of the DRI and the Stacy Joy Goodman Professor of Surgery, Distinguished Professor of Medicine, Professor of Biomedical Engineering, Microbiology and Immunology at the University of Miami Miller School. Dr. Ricordi also serves as director of the DRI's Cell Transplant Center.

This was the first successful tissue-engineered "mini pancreas" that has achieved long-term in a patient with type 1 diabetes. The biological platform was made by combining donor islets with the patient's own (autologous) blood plasma, which was laparoscopically layered onto the omentum. Clinical-grade thrombin was then layered over the islet/plasma mixture. Together, these substances create a gel-like material that sticks to the omentum and holds the islets in place. Over time, the body will absorb the gel, leaving the islets intact. The technique has been designed to minimize the inflammatory reaction that is normally observed when islets are implanted in the liver or in other sites with immediate contact to blood. The DRI's clinical trial, an important first step toward developing the BioHub mini organ, includes the immunosuppressive regimen currently used for clinical islet transplantation studies.

"The results thus far have shown that the omentum appears to be a viable site for islet implantation using this new platform technique," said lead author David Baidal, M.D., Assistant Professor of Medicine and member of the DRI's Clinical Cell Transplant team. "Data from our study and long-term follow up of additional omental islet transplants will determine the safety and feasibility of this strategy of , but we are quite excited about what we are seeing now."

In type 1 diabetes, the insulin-producing cells of the pancreas have been mistakenly destroyed by the immune system, requiring patients to manage their blood sugar levels through a daily regimen of insulin therapy. Islet transplantation has allowed many patients to live without the need for insulin injections after receiving a transplant of donor . Some patients who have received transplants at the DRI have been insulin independent for more than a decade, as DRI researchers have published.

Explore further: Mini-organ would mimic pancreas to treat type 1 diabetes

More information: Bioengineering of an Intraabdominal Endocrine Pancreas, New England Journal of Medicine (2017). www.nejm.org/doi/full/10.1056/NEJMc1613959

Related Stories

Mini-organ would mimic pancreas to treat type 1 diabetes

March 5, 2013
(HealthDay)— A new bioengineered, miniature organ dubbed the BioHub might one day offer people with type 1 diabetes freedom from their disease.

Cell study offers more diabetic patients chance of transplant

August 29, 2013
Diabetic patients could benefit from a breakthrough that enables scientists to take cells from the pancreas and change their function to produce insulin.

New procedure could improve success rate of cell transplant to cure type 1 diabetes

April 4, 2016
New research suggests pretreating cells with a peptide hormone may improve the success rate of pancreatic islet cell transplants, a procedure that holds great promise for curing Type 1 diabetes. The results will be presented ...

Artificial pancreas therapy performs well in pilot study

November 20, 2015
Researchers are reporting a breakthrough toward developing an artificial pancreas as a treatment for diabetes and other conditions by combining mechanical artificial pancreas technology with transplantation of islet cells, ...

Pancreatic islets infusion for diabetes patient being readied for procedure in Japan

May 16, 2012
The Japanese Pancreas and Islet Transplantation Association (JPITA) is preparing for the nation's first transplantation of pancreatic islets from a brain-dead donor to a patient with Type 1 diabetes, it was learned Saturday.

Recommended for you

Personalized blood sugar goals can save diabetes patients thousands

December 11, 2017
A cost analysis by researchers at the University of Chicago Medicine shows treatment plans that set individualized blood sugar goals for diabetes patients, tailored to their age and health history, can save $13,546 in health ...

Kidney disease increases risk of diabetes, study shows

December 11, 2017
Diabetes is known to increase a person's risk of kidney disease. Now, a new study from Washington University School of Medicine in St. Louis suggests that the converse also is true: Kidney dysfunction increases the risk of ...

Type 2 diabetes is not for life

December 5, 2017
Almost half of the patients with Type 2 diabetes supported by their GPs on a weight loss programme were able to reverse their diabetes in a year, a study has found.

Skipping breakfast disrupts 'clock genes' that regulate body weight

November 30, 2017
Irregular eating habits such as skipping breakfast are often associated with obesity, type 2 diabetes, hypertension and cardiovascular disease, but the precise impact of meal times on the body's internal clock has been less ...

Type 2 diabetes has hepatic origins

November 28, 2017
Affecting as many as 650 million people worldwide, obesity has become one of the most serious global health issues. Among its detrimental effects, it increases the risk of developing metabolic conditions, and primarily type ...

Critical link between obesity and diabetes has been identified

November 28, 2017
UT Southwestern researchers have identified a major mechanism by which obesity causes type 2 diabetes, which is a common complication of being overweight that afflicts more than 30 million Americans and over 400 million ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.