Turning a toxoplasma protein into a tool against infection

May 10, 2017, University of Malaya
Toxoplasmosis is a parasitic disease that most severely affects people with a weakened immune system. Caused by the parasite Toxoplasma gondii, it spreads due to consumption of undercooked meat and exposure to cat faeces. Credit: Kateryna Kon / 123rf

Toxoplasmosis is a parasitic disease that most severely affects people with a weakened immune system. Caused by the parasite Toxoplasma gondii, it spreads due to consumption of undercooked meat and exposure to cat faeces. Although it can be mild, causing only flu-like symptoms, it can lead to brain problems such as lesions and encephalitis, in addition to other neurological disorders. It is not generally spread between humans, but can be passed to an unborn child if a pregnant woman is infected.

Current treatment options for toxoplasmosis are limited. Yee-Ling Lau and colleagues at the University of Malaya wanted to investigate potential vaccine candidates to prevent infection.

T. gondii invades cells with the help of a protein, ROP1, which is secreted within the parasite. The team looked at whether exposure to this protein could protect mice that were later infected with T. gondii. Past studies have shown that ROP1 does create some in cell cultures and in animals, but until now, no one has gone on to infect vaccinated mice with live parasites to test the effectiveness of the immune response.

Lau and colleagues took groups of mice and gave them three vaccinations at twoweek intervals. Some received a ROP1 treatment intramuscularly or under the skin, while others received a placebo using the same two injection techniques. Each group of mice was later given lethal doses of a virulent T. gondii strain.

The mice that had received the ROP1 treatment survived longer than the controls, regardless of the method of vaccination. The vaccinated mice survived up to 16 days, whereas the controls all succumbed to T. gondii infection after just nine. The researchers caution, however, that none of the vaccinated had complete protection.

The team believes that the protection occurs through cell-mediated immune responses; meaning that the immunity is not generated by antibodies, but by the activation of molecules in the cell. Although this work is promising, further work needs to be done to investigate other agents that could be combined with ROP1 to achieve better results, or even complete protection against the .

Explore further: How a nasty, brain-eating parasite could help us fight cancer

Related Stories

How a nasty, brain-eating parasite could help us fight cancer

August 26, 2016
We've known since the turn of the 20th century that some infectious diseases are a major risk for developing specific cancers. More worryingly, about one-sixth of cancers worldwide are attributable to infectious agents. Globally, ...

Parasite proteins prompt immune system to fight off ovarian tumors in mice

July 22, 2016
Scientists identified the specific proteins secreted by the parasite Toxoplasma gondii that cause the immune system in mice to attack established ovarian tumors. The study, led by David Bzik of the Geisel School of Medicine ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016
Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

New study brings long-sought vaccines for deadly parasite closer to reality

December 13, 2012
One major cause of illness from food-borne diseases is the parasite Toxoplasma gondii (T. gondii). New insights into how the immune system combats T. gondii are provided in a study published by Cell Press December 13th in ...

Scientists find Huntington's disease mice respond differently to common infection

September 19, 2016
Casual conversation three years ago between University of Wyoming veterinary sciences and molecular biology researchers resulted in findings that show for the first time mice engineered to have the human genetic disorder ...

Recommended for you

A new approach to developing a vaccine against vivax malaria

September 21, 2018
A novel study reports an innovative approach for developing a vaccine against Plasmodium vivax, the most prevalent human malaria parasite outside sub-Saharan Africa. The study led by Hernando A. del Portillo and Carmen Fernandez-Becerra, ...

Pre-clinical success for a universal flu vaccine offers hope for third generation approach

September 21, 2018
Researchers from the University of Oxford's Department of Zoology have demonstrated pre-clinical success for a universal flu vaccine in a new paper published in Nature Communications.

Researchers define possible molecular pathway for neurodegeneration in prion diseases

September 21, 2018
A new study has shed light on the mechanisms underlying the progression of prion diseases and identified a potential target for treatment.

Fighting a deadly parasite: Scientists devise a method to store Cryptosporidium, aiding vaccine research efforts

September 21, 2018
In May, just before one of the hottest summers on record, the U.S. Centers for Disease Control and Prevention issued a warning about diseases lurking in recreational water facilities like swimming pools and water playgrounds. ...

Scientists make significant discovery in the fight against drug-resistant tuberculosis

September 20, 2018
A team of scientists have identified a naturally occurring antibiotic that may help in the fight against drug-resistant Tuberculosis.

Anti-cancer drugs may hold key to overcoming antimalarial drug resistance

September 20, 2018
Scientists have found a way to boost the efficacy of the world's most powerful antimalarial drug with the help of chemotherapy medicines, according to new research published in the journal Nature Communications.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.