Uncovering the genetic mechanisms driving embryonic development

May 11, 2017 by Kevin Mccullough, Northwestern University
Ali Shilatifard, PhD, the Robert Francis Furchgott Professor and chair of the Department of Biochemistry and Molecular Genetics, was the senior author of the study that explored the activation of Hox genes in early embryonic development.

A new Northwestern Medicine study, published in Genes and Development, has identified two DNA elements crucial to the activation of a set of genes that drive the early development of embryos, and which also play an important role in the development of cancer cells.

So-called Hox are a related group that control the body plan of a developing embryo; in humans, they regulate the orientation and structure of the vertebrae and spinal cord as well as the location and growth of limbs. Previously, however, the question of how Hox genes become activated, moving from a silent form to an active form, have been poorly-understood by scientists.

"Hox genes are not only crucial for the proper development of the embryo but also play essential roles in tumor formation and metastasis. Understanding the mechanisms that trigger the expression of Hox genes could help us develop novel therapeutic approaches against cancer," said first-author Kaixiang Cao, PhD, a postdoctoral fellow in the laboratory of Ali Shilatifard, PhD, the Robert Francis Furchgott Professor and chair of the Department of Biochemistry and Molecular Genetics.

In the study, the authors present several experiments that provide evidence for a model of embryonic development that utilizes multiple layers of regulation as a "fail-safe mechanism" to guarantee organisms develop properly.

First, the scientists identified two sequences of DNA, located in a so-called "gene desert" between functioning genes, and demonstrated how these sequences ensure activation of Hox genes.

Previously thought to be "junk DNA," the sequences of DNA found in gene deserts have recently been found to play important regulatory roles, and irregularities in these stretches of the genetic code have been associated with disease, including some forms of cancer.

After the scientists pinpointed these previously unidentified DNA sequences, named E1 and E2, they demonstrated they were acting as "shadow enhancers," and regulated the early expression of Hox genes.

Utilizing mouse embryonic stem cell models that had been modified to lack one or both of the sequences, the scientists showed that the two sequences worked redundantly: deletion of either the E1 or E2 sequence resulted in unaffected activation, but removing both E1 and E2 stopped the Hox genes from activating properly.

Separately, the scientists also demonstrated that a protein called SET1A, part of a family of enzymes called COMPASS, which have previously been shown to activate Hox genes, also regulates Hox gene activation: without SET1A, several Hox genes failed to activate.

According to the scientists, the E1/E2 regulation and the SET1A regulation of Hox genes appear to be independent of each other, and are part of a series of multiple regulatory processes that work together to fine-tune the activation of genes essential for the early growth of embryos.

"Future studies that identify small molecules targeting SET1A and factors functioning through the E1/E2 DNA sequences will be important for developing therapies for Hox gene disorders," Shilatifard said.

The project's insight into the process by which Hox genes are regulated, has the potential to identify targets for new treatments for developmental diseases caused by dysfunction in Hox genes, as well as forms of cancer that arise from Hox gene errors, according to the authors.

Explore further: Molecular 'on switch' could point to treatments for pediatric brain tumor

More information: Kaixiang Cao et al. SET1A/COMPASS and shadow enhancers in the regulation of homeotic gene expression, Genes & Development (2017). DOI: 10.1101/gad.294744.116

Related Stories

Molecular 'on switch' could point to treatments for pediatric brain tumor

February 24, 2017
Massachusetts General Hospital (MGH) researchers have identified a mechanism that controls the expression of genes regulating the growth of the most aggressive form of medulloblastoma, the most common pediatric brain tumor. ...

Recommended for you

Targeting the engine room of the cancer cell

June 18, 2018
Researchers at Columbia University Irving Medical Center (CUIMC) have developed a highly innovative computational framework that can support personalized cancer treatment by matching individual tumors with the drugs or drug ...

Scientists learn more about how gene linked to autism affects brain

June 18, 2018
New preclinical research shows a gene already linked to a subset of people with autism spectrum disorder is critical to healthy neuronal connections in the developing brain, and its loss can harm those connections to help ...

161 genetic factors for myopia identified

June 15, 2018
The international Consortium for Refractive Error and Myopia (CREAM) recently published the largest-ever genetic study of myopia in Nature Genetics. Researchers from the Gutenberg Health Study at the Medical Center of Johannes ...

Genetic disorder identified in children

June 15, 2018
A genetic defect affecting normal development in children has been identified by a study involving University of Queensland researcher and alumnus Professor David Coman.

Scientists discover biomarker for flu susceptibility

June 13, 2018
Researchers at the Stanford University School of Medicine have found a way to predict whether someone exposed to the flu virus is likely to become ill.

Brain secrets that flow in our blood

June 13, 2018
Our blood can be used to uncover genetic secrets inside the brain, according to University of Queensland research.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.