Chatter in the deep brain spurs empathy in rats

June 23, 2017 by Kara Manke, Duke University
Duke researchers tracked how signals ping back and forth within the brain during empathic decision-making in rats. Credit: Soon-Beom Hong, PLOS One

It's a classic conundrum: while rushing to get to an important meeting or appointment on time, you spot a stranger in distress. How do you decide whether to stop and help, or continue on your way?

A new study by neuroscientists at Duke and Stanford University sheds light on how the coordinates these complex decisions involving altruism and empathy. The answer lies in the way multiple areas of the brain collaborate to produce the decision, rather than just one area or another making the call.

"The brain is more than just the sum of its individual parts," said Jana Schaich Borg, assistant research professor in the Social Science Research Institute and the Center for Cognitive Neuroscience at Duke.

Using a technique that combines electrical monitoring of brain activity with machine learning, the team was able to tune into the brain chatter of engaged in helping other rats.

They found that regions deep within the brain—those primarily responsible for emotions and basic bodily functions—are core to empathic decision-making. The specific role of each brain area is not fixed, but can change depending on which other areas it is communicating with, and what specific messages it is receiving, according to Schaich Borg.

"We know that there are many brain regions that seem to do multiple things, sometimes at the same time, but we don't know how the brain pulls that off," Schaich Borg said.

"One idea is that the function a brain region plays at a specific time could be determined by what it is connected to at that time, what other brain regions are doing at that time, and how brain regions are talking to each other at that time," Schaich Borg said. "Some people have called this hypothetical phenomenon 'neural context,' and we've found concrete evidence for that."

The results clarify earlier conflicting findings on the role of specific brain regions, such as the insula, in guiding antisocial and psychopathic behavior, and may shed light on how to encourage altruistic behavior in humans.

The study appears in the June issue of Brain and Behavior.

Schaich Borg began this research as a graduate student at Stanford, where she was driven to understand the neurological basis of empathy in hopes of finding better treatments for conditions like psychopathy, in which people seem unable to experience empathy at all.

"I wanted to understand what makes someone help someone else, or what makes someone refrain from hurting another person even when they don't like them," Schaich Borg said. Ethical and practical considerations can make it tricky to study the neural mechanisms of this type of decision-making in human subjects. So working with then-advisor Luis de Lecea, she devised an experiment to elicit empathetic decision-making in rats.

Rats generally dislike bright lights, preferring to stay in places that are dark or dimly lit, Schaich Borg said. But she found that when given a choice, most rats would enter a brightly-lit chamber if it could prevent another rat from receiving an electrical shock.

A series of molecular tests pinpointed which regions of the brain were active while the rats made these decisions. "The brain regions that encoded what the rat was choosing to do were the same ones we found in other studies to be involved in human empathy and moral decision making," Schaich Borg said. "It's fascinating that rats are using the same brain regions that we seem to be using, and it suggests that rats provide a promising avenue for better understanding the way the human brain makes decisions to help others."

But the results were also confusing in some ways. Specific areas of the brain, such as the amygdala or the insula, appeared to be increasingly active the more rats chose to help, but these same brain regions were also known to be involved in many other behaviors that had nothing to do with social behavior.

To get a deeper view of how the rats' brains coordinated empathic decision-making, Schaich Borg became a postdoctoral researcher in the lab of Kafui Dzirasa, assistant professor of psychiatry and behavioral sciences at Duke. Dzirasa had developed a way of simultaneously tuning into electrical signals from multiple points of the brains of awake, behaving rodents. Careful analysis of these signals can reveal not only which parts of the brain are activated, but also how different areas of the brain talk to each other.

Schaich Borg applied this technique to her rats, recording the activity within 10 specific brain regions while also searching for signs of oscillatory "coherence" or communication between each of the regions as the rats were making decisions about how to respond to other rats getting shocked. Collaborating with statisticians, she then used machine learning techniques to correlate the vast array of brain data with the rats' behaviors.

"We found that you cannot describe the as well with single brain regions as you can by looking at coherence, or connections between different brain regions," Schaich Borg said.

The results help explain conflicting roles the insula has been found to play in human psychopathy and addiction. "Perhaps the insula facilitates certain social behaviors when it is talking a group of brain regions in one way, but inhibits those same behaviors when it is talking to the same in a different way," Schaich Borg said.

"Our results confirm that if you just look at one brain at a time, you likely will not be getting the full story of how the mind works," she said. "To understand how the brain coordinates complex behaviors—especially social behaviors—we likely have to look at the changing inputs and outputs of individual regions in different situations."

Explore further: Cognitive-related neural pattern to activate machines

More information: Jana Schaich Borg et al, Rat intersubjective decisions are encoded by frequency-specific oscillatory contexts, Brain and Behavior (2017). DOI: 10.1002/brb3.710

Related Stories

Cognitive-related neural pattern to activate machines

June 14, 2017
Brain-machine interfaces represent a solution for people with physical difficulties to communicate with their physical and social environment. In this work, researchers have identified a functional brain pattern in the prefrontal ...

Brain circuit enables split-second decisions when cues conflict

April 24, 2017
When animals hunt or forage for food, they must constantly weigh whether the chance of a meal is worth the risk of being spotted by a predator. The same conflict between cost and benefit is at the heart of many of the decisions ...

Surprise communication found between brain regions involved in infant motor control

May 4, 2017
A newborn's brain is abuzz with activity. Day and night, it's processing signals from all over the body, from recognizing the wriggles of the child's own fingers and toes to the sound of mommy's or daddy's voice.

Brain connectivity reveals hidden motives

March 3, 2016
To understand human behaviors, it is crucial to understand the motives behind them. So far, there was no direct way to identify motives. Simply observing behavior or eliciting explanations from individuals for their actions ...

Scientists take step toward mapping how the brain stores memories

January 3, 2017
A new study led by scientists at The Scripps Research Institute (TSRI) sheds light on how the brain stores memories. The research, published recently in the journal eLife, is the first to demonstrate that the same brain region ...

Brain's connections that keep related memories distinct identified in new study

January 20, 2017
Neuroscientists at the University of Bristol are a step closer to understanding how the connections in our brain which control our episodic memory work in sync to make some memories stronger than others. The findings, published ...

Recommended for you

Forty percent of people have a fictional first memory, says study

July 17, 2018
Researchers have conducted one of the largest surveys of people's first memories, finding that nearly 40 per cent of people had a first memory which is fictional.

Insight without incision: Advances in noninvasive brain imaging offers improvements to epilepsy surgery

July 17, 2018
About a third of epilepsy sufferers require treatment through surgery. To check for severe epilepsy, clinicians use a surgical procedure called electrocorticography (ECoG). An ECoG maps a section of brain tissue to help clinicians ...

Protein found to be key component in irregularly excited brain cells

July 17, 2018
In a new study in mice, researchers have identified a key protein involved in the irregular brain cell activity seen in autism spectrum disorders and epilepsy. The protein, p53, is well-known in cancer biology as a tumor ...

New drug target for remyelination in MS is identified

July 17, 2018
Remyelination, the spontaneous regeneration of the fatty insulator in the brain that keeps neurons communicating, has long been seen as crucial to the next big advance in treating multiple sclerosis (MS). However, a lack ...

Artificial neural networks now able to help reveal a brain's structure

July 17, 2018
The function of the brain is based on the connections between nerve cells. In order to map these connections and to create the connectome, the "wiring diagram" of a brain, neurobiologists capture images of the brain with ...

Convergence of synaptic signals is mediated by a protein critical for learning and memory

July 16, 2018
Inside the brain, is a complex symphony of perfectly coordinated signaling. Hundreds of different molecules amplify, modify and carry information from tiny synaptic compartments all the way through the entire length of a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.