Discovery improves understanding of cellular aging and cancer development

June 14, 2017
ZBTB48 binds through the last of its 11 zinc fingers directly to telomeric DNA (TTAGGG, in red) as well as subtelomeric variant repeats (TTGGG/TCAGGG, grey), which represent the protective caps at the end of chromosomes. In addition, it binds to the promoter sequences (dark blue) of specific target genes including mitochondrial fission process 1, MTFP1. In the absence of ZBTB48 (right panel) telomeres become longer whereas the expression of ZBTB48 target genes is strongly reduced. For instance, ZBTB48 KO (knock-out) cells loose the expression of MTFP1 leading to defects in the mitochondrial network with mitochondria clustering around the nucleus instead of being widely spread throughout the cell. Credit: National University of Singapore

A team of researchers led by Dr Dennis Kappei, a Special Fellow from the Cancer Science Institute of Singapore (CSI Singapore) at the National University of Singapore (NUS), has discovered the role of the protein ZBTB48 in regulating both telomeres and mitochondria, which are key players involved in cellular ageing. The results of the study will contribute to a better understanding of the human ageing process as well as cancer development.

The study, which was conducted in collaboration with researchers at the TU Dresden and the Institute of Molecular Biology Mainz, both in Germany, were published in the journal EMBO Reports in May 2017.

In vertebrates, telomeres act as protective caps located at the ends of chromosomes. Telomeres shorten every time a cell divides, and ultimately the loss of telomeres leads to cellular senescence, where cells cease to divide, and eventually, cell death. Cancer cells are known to bypass this limit by activating mechanisms that keep their telomeres long, thereby allowing for their unlimited proliferative potential. Previous studies have linked telomeres to the function of mitochondria (essential cell organelles that act as cellular power plants) and vice versa.

ZBTB48 has recently been found to directly bind to telomeres that are abnormally long, and to limit them from growing further. It is only the fourth protein that is known to bind to telomeres. The first two proteins, TRF1 and TRF2, had been discovered about two decades ago, while previous research work by Dr Kappei had discovered the third, HOT1, only in 2013.

In this study, the research team found that ZBTB48 not only prevents further telomere lengthening in cells that already have abnormally long telomeres, but more generally in regardless of their . In addition, the team also uncovered that ZBTB48 can activate the production of a specific set of genes, which include a mitochondrial gene called MFTP1.

"The findings from our study validated recent findings on the telomere binding role of ZBTB48. Our team's independent discovery of the ZBTB48 protein is an extension to these recent findings, as we found evidence indicating that , in general, are regulated by ZBTB48. It potentially also suggests applications for the human ageing process even at old age when telomere length has already decreased," said Dr Grishma Rane, Research Fellow at CSI Singapore and co-first author of the study.

Moving forward, the team is looking deeper into the role of the ZBTB48 protein in both cancer development and ageing. Dr Kappei said, "We are now actively pursuing the exact molecular mechanism through which ZBTB48 controls telomere length, and further looking into ZBTB48's role in various cancers, such as neuroblastoma, in which the gene is frequently deleted. With the discovery of ZBTB48's novel linkage between telomeres and mitochondria, which both have key roles in , we will also be studying whether this interplay contributes to maintenance."

Explore further: Scientists discover master regulator of cellular aging

More information: Arne Jahn et al, ZBTB48 is both a vertebrate telomere‐binding protein and a transcriptional activator, EMBO reports (2017). DOI: 10.15252/embr.201744095

Related Stories

Scientists discover master regulator of cellular aging

January 12, 2017
Scientists at The Scripps Research Institute (TSRI) have discovered a protein that fine-tunes the cellular clock involved in aging.

How two telomere proteins interact with each other and the functional effects of cancer-associated mutations

April 11, 2017
Scientists at The Wistar Institute have unveiled part of the protein complex that protects telomeres—the ends of our chromosomes. The study, published online in Nature Communications, explains how a group of genetic mutations ...

Telomere length predicts cancer risk

April 3, 2017
The length of the telomere "caps" of DNA that protect the tips of chromosomes may predict cancer risk and be a potential target for future therapeutics, University of Pittsburgh Cancer Institute (UPCI) scientists will report ...

Telomere length influences cancer cell differentiation

June 27, 2013
Researchers from the Japanese Foundation for Cancer Research in Tokyo have discovered that forced elongation of telomeres (extensions on the end of chromosomes) promotes the differentiation of cancer cells, probably reducing ...

$89 test kit claims to determine how well your cells are aging. Does it work?

November 28, 2016
A new $89 test claims to calculate the age of the DNA in your cells and tell you how well you are aging. The test, called TeloYears, is the newest in a bunch of mail-order kits that measure the length of telomeres, the caps ...

Scientists find that for stem cells to be healthy, telomere length has to be just right

December 5, 2016
Ever since researchers connected the shortening of telomeres—the protective structures on the ends of chromosomes—to aging and disease, the race has been on to understand the factors that govern telomere length. Now, ...

Recommended for you

Scientists find RNA with special role in nerve healing process

August 22, 2017
Scientists may have identified a new opening to intervene in the process of healing peripheral nerve damage with the discovery that an "anti-sense" RNA (AS-RNA) is expressed when nerves are injured. Their experiments in mice ...

Mouse model of human immune system inadequate for stem cell studies

August 22, 2017
A type of mouse widely used to assess how the human immune system responds to transplanted stem cells does not reflect what is likely to occur in patients, according to a study by researchers at the Stanford University School ...

Researchers offer new targets for drugs against fatty liver disease and liver cancer

August 22, 2017
There may no silver bullet for treating liver cancer or fatty liver disease, but knowing the right targets will help scientists develop the most effective treatments. Researchers in Sweden have just identified a number of ...

Make way for hemoglobin

August 18, 2017
Every cell in the body, whether skin or muscle or brain, starts out as a generic cell that acquires its unique characteristics after undergoing a process of specialization. Nowhere is this process more dramatic than it is ...

Bio-inspired materials give boost to regenerative medicine

August 18, 2017
What if one day, we could teach our bodies to self-heal like a lizard's tail, and make severe injury or disease no more threatening than a paper cut?

Are stem cells the link between bacteria and cancer?

August 17, 2017
Gastric carcinoma is one of the most common causes of cancer-related deaths, primarily because most patients present at an advanced stage of the disease. The main cause of this cancer is the bacterium Helicobacter pylori, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.