A mouse's view of the world, seen through its whiskers

June 28, 2017, University of California - Berkeley
Mice are far-sighted and must use their whiskers to scope out the space around their head. Credit: University of California - Berkeley

Mice, unlike cats and dogs, are able to move their whiskers to map out their surroundings, much as humans use their fingers to build a 3D picture of a darkened room.

University of California, Berkeley researchers have for the first time reconstructed the whisker map a mouse creates of its surroundings in order to navigate its world, catch insects and avoid cats.

These are not the typical brain maps that show which brain cells are activated when a particular whisker is tweaked, or, in humans, the so-called homunculus map in the human cortex of touch receptors on the skin.

"It's not a body map but a spatial map of the area around the animal's head that is being scanned by the whiskers: a totally new thing that has not been shown before in any species," said Hillel Adesnik, a UC Berkeley assistant professor of molecular and cell biology.

Humans may also have sensory maps of the outside world encoded in the neurons of the brain's cerebral cortex, Adesnik said—not only touch maps, but also maps of what we see and hear, and perhaps our other senses.

Adesnik and his colleagues published their results in the current issue of the journal Neuron, now available online.

Whisking behavior

Many neurons are activated in layers 2 and 3 of the cortex (left) when a mouse's whiskers encounter an object (black dot in right image). After conducting experiments in which a vertical pole was placed in various positions relative to the mouse's face, researchers found that the position of the object was represented by a smooth map in the cortex. When researchers trimmed the whiskers down to one, the representation in the cortex was no longer smooth, showing that this layer of the somatosensory cortex was integrating information from all whiskers to create a map of the space around the mouse's head. Credit: Evan Lyall and Hillel Adesnik, UC Berkeley.

Researchers study rodent whiskers because the sensory nerves at the base of each whisker connect to well-defined structures in the cortex or outer layer of the brain—so-called barrel columns, because they're shaped like a barrel. Each of the mouse's 24 large facial whiskers has an associated barrel column that's activated when the whisker encounters an object. The entire barrel cortex is between 2.5 and 3 millimeters across.

Neuroscientists have thoroughly mapped these columns over the past decades, and continue to study them to discover how brain circuits process, store and use sensory information.

Adesnik, however, was more interested in how the brain actually uses whisker information to construct a picture of the world around the head.

"Beyond the reach of the whiskers, rodents use vision as well as auditory and olfactory cues to explore the world, but because their near vision is very blurry, close to the face rodents use touch," he said. "With their whiskers they scan the world the way we would scan with our hand at night on the night table to look for our cellphone."

The question he asked was, "How does an animal represent space in its cortex so it can localize and then identify an object so that it can execute an action, like picking up the phone, or, for rodents, identifying something it wants to eat?"

As an object (black circle) was moved within whisking range of the whiskers, researchers recorded neuron activity from the barrel cortex of the brain. Credit: University of California - Berkeley

The answer lies in a layer of cells in the outermost thickness of the mouse's somatosensory cortex. While the barrel cells in the preceding cortical layer, layer 4, are patterned according to the whiskers, neurons in layers 2 and 3 receive input from several barrel cells at once and process this information. Layer 4 is only about 200 microns deep, while layers 2 and 3 about 300 microns deep.

"The hypothesis was that layers 2 and 3, which are one step away from layer 4, are not just encoding whiskers; maybe they are encoding space, that is, the space the whiskers are currently scanning," Adesnik said. "You can think of it as the mouse's field of view as it's moving its whiskers. Maybe there is a map that represents that space, and not the whiskers."

Using two-photon calcium imaging, which allows more precise localization of fluorescently tagged nerve cells deeper inside brain tissue, Adesnik was able to map how the cells in layers 2 and 3 respond when the mice whisked their whiskers and encountered objects near their head. In most prior studies, mice were sedated or anesthetized and experimenters moved one whisker at at time. In this study, the animals were awake and moved their whiskers into objects while running on a treadmill.

His recordings of cell activation through a window in the skull revealed a smooth map of the physical space the mouse was exploring with its whiskers, not a map of specific whisker activity.

"We think that in 4, the neurons really care about whiskers, but not the scanned space," he said, "while in 2 and 3 they are integrating over whiskers, perhaps even performing a mathematical operation something like smoothing over multiple , that encodes the absolute horizontal location of the object in the reference frame of the animal's head."

Neurons in layers 2 and 3 of the somatosensory cortex show a preference for the position of an object relative to the mouse’s head (left), which constitutes a map of the space within whisking range. When all but one of the whiskers is trimmed, the neuron responses are scattered all over this layer of the cortex, showing that the layer requires input from many whiskers to map the world around the head. Credit: University of California - Berkeley

The map changes continually as the animal moves its head.

The findings suggest that humans may also have a smooth touch map of the space around us in the somatosensory cortex; not only a finger representation, but a representation of where the hand is currently scanning, he said.

Adesnik and his lab colleagues are now looking at higher areas of the cortex, which likely do more information processing to identify objects such as prey and connect with motor neurons to trigger a pounce.

Explore further: Animal models can't 'tune out' stimuli, mimicking sensory hypersensitivity in humans

More information: Scott R. Pluta et al. Surround Integration Organizes a Spatial Map during Active Sensation, Neuron (2017). DOI: 10.1016/j.neuron.2017.04.026

Related Stories

Animal models can't 'tune out' stimuli, mimicking sensory hypersensitivity in humans

June 12, 2017
By tickling the whiskers of mice, and recording how they respond, UCLA researchers may be closer to understanding why many children with autism cover their ears when they hear loud sounds or can't tolerate scratchy wool sweaters.

Study in mice identifies neurons that sense touch and motion

April 20, 2017
Working with genetically engineered mice—and especially their whiskers—Johns Hopkins researchers report they have identified a group of nerve cells in the skin responsible for what they call "active touch," a combination ...

'Sensational' barrels in the brain

November 18, 2013
A new study from scientists at the Tata Institute of Fundamental Research (TIFR), Mumbai, gives an insight into how the circuitry for high resolution signal processing is wired in the brain.

Recommended for you

New neurons in the adult brain are involved in sensory learning

February 23, 2018
Although we have known for several years that the adult brain can produce new neurons, many questions about the properties conferred by these adult-born neurons were left unanswered. What advantages could they offer that ...

Do you see what I see? Researchers harness brain waves to reconstruct images of what we perceive

February 22, 2018
A new technique developed by neuroscientists at the University of Toronto Scarborough can, for the first time, reconstruct images of what people perceive based on their brain activity gathered by EEG.

Neuroscientists discover a brain signal that indicates whether speech has been understood

February 22, 2018
Neuroscientists from Trinity College Dublin and the University of Rochester have identified a specific brain signal associated with the conversion of speech into understanding. The signal is present when the listener has ...

Study in mice suggests personalized stem cell treatment may offer relief for multiple sclerosis

February 22, 2018
Scientists have shown in mice that skin cells re-programmed into brain stem cells, transplanted into the central nervous system, help reduce inflammation and may be able to help repair damage caused by multiple sclerosis ...

Biomarker, clues to possible therapy found in novel childhood neurogenetic disease

February 22, 2018
Researchers studying a rare genetic disorder that causes severe, progressive neurological problems in childhood have discovered insights into biological mechanisms that drive the disease, along with early clues that an amino ...

A look at the space between mouse brain cells

February 22, 2018
Between the brain's neurons and glial cells is a critical but understudied structure that's been called neuroscience's final frontier: the extracellular space. With a new imaging paradigm, scientists can now see into and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.