Balance and movement improved in animal model of Parkinson's disease

June 12, 2017, University of California, Los Angeles

Researchers at UCLA have developed a molecular compound that improves balance and coordination in mice with early stage Parkinson's disease. Further, the drug, called CLR01, reduced the amount of a toxic protein in the brain that is thought to be one of the prime culprits in the development of the disorder.

Parkinson's disease is a nervous system disorder that affects movement. It's estimated that as many as 1 million Americans live with Parkinson's, and that roughly 60,000 are diagnosed with it each year. There is no cure. The disease is chronic and progressive, and over time can worsen from tremors in a person's hands and slow movements, to impaired balance and coordination and, ultimately, overall rigidity of the body, including difficulty swallowing and speaking.

While the cause is not known, growing evidence points to the . The protein binds together in "clumps," called aggregates, becoming toxic and killing that produce dopamine, a neurotransmitter needed to send signals among neurons involved in controlling movements.

Earlier research by Gal Bitan, an associate professor of neurology at the David Geffen School of Medicine at UCLA, and colleagues led to the development of CLR01, which is known as a molecular tweezer—a complex compound capable of disrupting the formation of toxic protein clumps. Shaped like the letter "C," CLR01 wraps around chains of lysine, a basic amino acid that is a constituent of most proteins. In the previous work in zebrafish, the scientists showed that the tweezer could decrease the clumping of alpha-synuclein and prevent its negative effects without detectable toxicity or side effects to normal, functioning cells in the brain.

In this study in mice, the UCLA researchers took a more refined approach. It turns out there are two toxic forms of alpha-synuclein. One is the proteins that clump together, forming aggregates. The second is a soluble form that is difficult to detect because it is not very stable. This is the more toxic form and is thought to be the culprit affecting the neurons. In the new study, the researchers used a treatment of CLR01 that did not affect the aggregated form of alpha-synuclein; instead, it only reduced the soluble form. This proved to be sufficient to help improve movements in mice. These findings are important because they suggest that researchers may not need to focus on the aggregates if the toxic soluble of alpha-synuclein can be reduced or destroyed.

CLR01 previously showed a strong therapeutic effect in a zebrafish model of Parkinson's. This study is the first to demonstrate CLR01's effectiveness in a mammal, one of the last important steps before human .

The researchers are now working on optimizing the blood-brain barrier penetration of CLR01 and measuring all the pharmacological features necessary for applying to the Food and Drug Administration to begin the first human, clinical trials.

Explore further: Parkinson's disease stopped in animal model

Related Stories

Parkinson's disease stopped in animal model

March 2, 2012
(Medical Xpress) -- Millions of people suffer from Parkinson's disease, a disorder of the nervous system that affects movement and worsens over time. As the world's population ages, it's estimated that the number of people ...

Researchers report potential new treatment to stop Alzheimer's disease

November 15, 2012
Last March, researchers at UCLA reported the development of a molecular compound called CLR01 that prevented toxic proteins associated with Parkinson's disease from binding together and killing the brain's neurons.

Re­search­ers cor­rect Par­kin­son's mo­tor symp­toms in mice

December 15, 2016
A research group led by University of Helsinki Docent Timo Myöhänen has succeeded in correcting the motor symptoms associated with Parkinson's disease in mice. These results are promising in terms of treatment, since Parkinson's ...

Researchers identify when Parkinson's proteins become toxic to brain cells

March 14, 2016
Researchers have used a non-invasive method of observing how the process leading to Parkinson's disease takes place at the nanoscale, and identified the point in the process at which proteins in the brain become toxic, eventually ...

A better model for Parkinson's disease

February 1, 2016
Scientists at EPFL solve a longstanding problem with modeling Parkinson's disease in animals. Using newfound insights, they improve both cell and animal models for the disease, which can propel research and drug development.

New treatment strategy could cut Parkinson's disease off at the pass

September 29, 2016
Researchers at Johns Hopkins report they have identified a protein that enables a toxic natural aggregate to spread from cell to cell in a mammal's brain—and a way to block that protein's action. Their study in mice and ...

Recommended for you

New transgenic model of Parkinson's illuminates disease biology

October 11, 2018
Parkinson's disease (PD) is a neurodegenerative disorder that presents clinically with abnormal movement and tremors at rest. In the brain, PD is marked by the accumulation of the protein, α-synuclein (αS), into clumps ...

Early Parkinson's patients waiting too long to seek medical evaluation

September 27, 2018
The time between diagnosis and the institution of symptomatic treatment is critical in the effort to find a cure for Parkinson's Disease (PD). A paper published in Nature Partner Journal: Parkinson's Disease notes too many ...

Molecule capable of halting and reverting neurodegeneration caused by Parkinson's disease identified

September 25, 2018
The small SynuClean-D molecule interrupts the formation of the alpha-synuclein amyloid fibres responsible for the onset of Parkinson's disease, and reverts the neurodegeneration caused by the disease. The study, headed by ...

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

Gene therapy shown to remove core component of Parkinson's disease

September 14, 2018
An international team led by Rush researcher Jeffrey Kordower, Ph.D., has moved a step closer to developing a treatment to clear brain cells of a protein that is an integral cause of Parkinson's disease. The team published ...

ADHD may increase risk of Parkinson's disease and similar disorders

September 12, 2018
While about 11 percent of children (4-17 years old) nationwide have been diagnosed with attention-deficit hyperactivity disorder (ADHD), the long-term health effects of having ADHD and of common ADHD medications remains understudied. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.