Patient-inspired research uncovers new link to rare disorder

June 22, 2017, Baylor College of Medicine

Meeting a young patient with Zellweger syndrome, a rare, life-threatening genetic disease, started a scientific investigation that culminated with an unexpected discovery. The condition, also known as peroxisomal biogenesis disorder, had been linked only to lipid or fat metabolism. Now, as a team of scientists from several institutions, including Baylor College of Medicine, reveals in PLoS Genetics, the condition also affects sugar metabolism. The discovery of this connection in animal models can potentially lead to treatments that might improve the condition.

"Meeting this patient at Texas Children's Hospital inspired me to begin a research investigation to learn more about this disorder," said first and corresponding author Dr. Michael Wangler, assistant professor of molecular and human genetics at Baylor College of Medicine. "The family of the patient found out about this research and offered to help. They started Zellfest, a fundraising event in San Antonio, Texas, that has partially supported our investigation. This led us to study this disorder in the fruit fly model in collaboration with the research team led by Dr. Hugo Bellen, professor of molecular and and investigator at the Howard Hughes Medical Institute at Baylor College of Medicine."

Peroxisomal biogenesis disorder results from defects in the genes that form the peroxisomes, essential micro-machines inside the cell that are involved in breaking down and producing certain lipids. When peroxisomes do not form, people develop a wide range of conditions that may include poor muscle tone, seizures, hearing and vision loss, poor feeding, skeletal abnormalities, as well as life-threatening problems in organs such as the liver, heart and kidney. There is no cure or treatment, other than palliative care.

"It's been well established that several lipid pathways are altered in this disease; these are known peroxisomal functions, but there has been very little focus on other parts of . Everybody was thinking this was mainly a lipid disorder," Wangler said.

An Unexpected Discovery

The researchers genetically engineered the laboratory fly, Drosophila, to lack two of the genes that are needed to make peroxisomes, PEX2 and PEX16, and then analyzed the flies' metabolism.

"We began a collaboration with Dr. James McNew, professor in biosciences at Rice University, who had started looking at flies using a metabolomics approach," Wangler said. "Metabolomics is like taking a snapshot of all the metabolism of an organism by measuring hundreds of small molecules all at once, rather than focusing on one molecule at a time. We analyzed lipids, small carbohydrates, amino acids, cholesterol and small lipids. This approach gave us a general view of the metabolism of the organism."

The scientists found that the flies lacking the genes had many of the problems observed in patients. The scientists learned, for instance, that these flies had short lives and locomotor problems. Their thorough analysis suggests that flies without PEX genes represent an animal model in which to further investigate the human condition.

"In addition, we were surprised to discover that these flies were very sensitive to low-sugar diet," Wangler said. "They cannot tolerate a low-sugar diet as well as normal flies; without sugar, flies without peroxisomes appear to be starving."

The researchers also applied a metabolomics approach to mice genetically engineered to lack a mouse PEX gene. As they had found in the flies, mice without peroxisomes also had alterations in the metabolism of sugars.

"Our understanding is that the enzymes that break down sugars are not directly connected to peroxisomes," Wangler said. "We are continuing our investigations and hope they will lead us to better understand how is linked to peroxisomal biogenesis disorders."

Rare Diseases Help Understanding of Common Diseases

"Peroxisomes also play a role in common diseases such as Alzheimer's and cancer," Wangler said. "Studying this rare disease can help us understand peroxisomes better, and, in turn, that knowledge will help clarify the role of peroxisomes in Alzheimer's and other . Rare diseases can help understand issues that also contribute to more ."

Explore further: Peroxisomes—the hybrid organelle

More information: Peroxisomal biogenesis is genetically and biochemically linked to carbohydrate metabolism in Drosophila and mouse, PLOS Genetics (2017). DOI: 10.1371/journal.pgen.1006825

Related Stories

Peroxisomes—the hybrid organelle

February 10, 2017
Like the human body itself, cells have structures within them that perform special tasks. These cellular structures are called organelles, and discovering more about organelles is key to unlocking the reasons why certain ...

Study of the machinery of cells reveals clues to neurological disorder

May 16, 2013
(Medical Xpress)—Investigation by researchers from the University of Exeter and ETH Zurich has shed new light on a protein which is linked to a common neurological disorder called Charcot-Marie-Tooth disease.

Genes Nardilysin and OGDHL linked to human neurological conditions

December 22, 2016
An international team of scientists has discovered that the gene, OGDHL, a key protein required for normal function of the mitochondria—the energy-producing factory of the cell—and its chaperone, nardilysin (NRD1) are ...

Aggressive flies: A powerful new model for neuropsychiatric disorders

June 7, 2017
Alterations in social behaviour, including aggression, are associated with a number of neuropsychiatric disorders such as schizophrenia and bipolar disorder. Along with DiGeorge syndrome and velo-cardio-facial syndrome, these ...

Recommended for you

New software helps detect adaptive genetic mutations

February 20, 2018
Researchers from Brown University have developed a new method for sifting through genomic data in search of genetic variants that have helped populations adapt to their environments. The technique, dubbed SWIF(r), could be ...

15 new genes identified that shape human faces

February 20, 2018
Researchers from KU Leuven (Belgium) and the universities of Pittsburgh, Stanford, and Penn State have identified 15 genes that determine facial features. The findings were published in Nature Genetics.

New algorithm can pinpoint mutations favored by natural selection in large sections of the human genome

February 20, 2018
A team of scientists has developed an algorithm that can accurately pinpoint, in large regions of the human genome, mutations favored by natural selection. The finding provides deeper insight into how evolution works, and ...

Highly mutated protein in skin cancer plays central role in skin cell renewal

February 20, 2018
Approximately once a month, our skin completely renews itself. If this highly coordinated process goes awry, it can lead to a variety of skin diseases, ranging from skin cancer to psoriasis. Cells lining such organs as skin ...

Study of smoking and genetics illuminates complexities of blood pressure

February 15, 2018
Analyzing the genetics and smoking habits of more than half a million people has shed new light on the complexities of controlling blood pressure, according to a study led by researchers at Washington University School of ...

New mutation linked to ovarian cancer can be passed down through dad

February 15, 2018
A newly identified mutation, passed down through the X-chromosome, is linked to earlier onset of ovarian cancer in women and prostate cancer in father and sons. Kunle Odunsi, Kevin H. Eng and colleagues at Roswell Park Comprehensive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.