Reproducing a retinal disease on a chip

June 15, 2017
Fundus photograph of wet-type age-related macular degeneration. Credit: Tohoku University

Approximately 80% of all sensory input is received via the eyes, so suffering from chronic retinal diseases that lead to blindness causes a significant decrease in the quality of life (QOL). And because retinal diseases are most common among the elderly, developing pathological analyses and treatments for retinal diseases has become an urgent issue in super-aging countries such as Japan.

Although evaluation of drug candidates against has been done on animal models, serious concerns arise regarding the ethics and costs in addition to the limitations of translating data from animal models to clinical settings.

In vitro cell culture models, an alternative to animal models, enable researchers to investigate specific molecules-of-interest and simply recapitulate complex and chronic conditions. Although studies on organ-on-a-chip for drug discovery have recently been extensively carried out, the organ-on-a-chip approach that targets the ocular tissues has been rarely investigated.

A joint research team from the Graduate Schools of Engineering and Medicine at Tohoku University has recapitulated a pathological condition of retinal diseases on a chip. They first cultured human and vascular , mimicking the outermost structure of the retina.

When retinal cells were exposed to hypoglycemic and hypoxic conditions after the cells had grown up, endothelial cells were found to migrate to the side of retinal cells to damage them. This process partially recapitulates neovascularization in wet-type age-related macular degeneration (AMD).

The research team believes the developed organ-on-a-chip could be used for disease modeling and drug screening as an alternative to animal models.

Explore further: Light-responsive ligands activate retinal neurons to repair vision loss in blind mice

More information: Li-Jiun Chen et al, Microfluidic co-cultures of retinal pigment epithelial cells and vascular endothelial cells to investigate choroidal angiogenesis, Scientific Reports (2017). DOI: 10.1038/s41598-017-03788-5

Related Stories

Light-responsive ligands activate retinal neurons to repair vision loss in blind mice

June 5, 2017
Retinitis pigmentosa, age-related macular degeneration, and other retinal diseases lead to the deterioration of photoreceptors, the light-sensing cells in the eye. Eventually, this deterioration progresses to vision loss. ...

New insight into eye diseases

September 28, 2016
Many diseases that lead to blindness, such as glaucoma and macular degeneration, are caused by the death of certain cells in the human retina that lack the ability to regenerate. But in species such as zebrafish these cells, ...

Photoreceptor cell death leads to blindness in CLN5 form of Neuronal Ceroid Lipofuscinosis

May 16, 2017
Researchers from the University of Eastern Finland have discovered a likely cause for visual impairment and eventual loss of vision in the Finnish variant of Neuronal Ceroid Lipofuscinosis (NCL). Visual impairment associated ...

Scientists show protective effects of suppressing thyroid hormone receptors in retina

May 11, 2017
New research published online in The FASEB Journal suggests that the suppression of thyroid hormone receptor activity locally in the retina protects cone photoreceptor cells in mouse models of human retinal degenerative diseases. ...

Potential new approaches to treating eye diseases

February 4, 2016
Potential new approaches to treating eye diseases such as age-related macular degeneration (AMD) are described in a new study, "IL-33 amplifies an innate immune response in the degenerating retina," in the February Journal ...

Researchers develop best-yet cell culture system for age-related macular degeneration

February 2, 2017
An international team from the University of Alabama at Birmingham and University College London and Queens University Belfast in the United Kingdom developed a cell culture model that could help to develop earlier treatment ...

Recommended for you

World's blind population to soar: study

August 3, 2017
The world's blind will increase threefold from about 36 million today to 115 million in 2050 as populations expand and individuals grow ever older, researchers said Thursday.

Simulations signal early success for fractal-based retinal implants

July 27, 2017
Computer simulations of electrical charges sent to retinal implants based on fractal geometry have University of Oregon researchers moving forward with their eyes focused on biological testing.

Scientists regenerate retinal cells in mice

July 26, 2017
Scientists have successfully regenerated cells in the retina of adult mice at the University of Washington School of Medicine in Seattle.

Genome editing with CRISPR-Cas9 prevents angiogenesis of the retina

July 24, 2017
A research team from the Schepens Eye Research Institute of Massachusetts Eye and Ear has successfully prevented mice from developing angiogenesis of the retina—the sensory tissue at the back of the eye—using gene-editing ...

Too little vitamin D may hinder recovery of injured corneas

July 24, 2017
Injury or disease in combination with too little vitamin D can be bad for the window to your eyes.

Combination of type 2 diabetes and sleep apnoea indicates eyesight loss within four years

July 4, 2017
Research led by the University of Birmingham has discovered that patients who suffer from both Type 2 diabetes and obstructive sleep apnoea are at greater risk of developing a condition that leads to blindness within an average ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.