Plant reveals anti-Alzheimer's compounds

June 20, 2017
Diagram of the brain of a person with Alzheimer's Disease. Credit: Wikipedia/public domain.

Japanese scientists have developed a method to isolate and identify active compounds in plant medicines, which accurately accounts for drug behavior in the body. Using the technique, they have identified several active compounds from Drynaria Rhizome, a traditional plant medicine, which improve memory and reduce disease characteristics in a mouse model of Alzheimer's disease.

Traditional plant medicines have been used by humans for a long time, and these therapies are still popular in many countries. Plants typically contain a huge variety of , many of which have no effect in the body, and some which can have significant effects. If a plant medicine shows a therapeutic effect, scientists are interested in isolating and identifying the compounds that cause the effect to see if they can be used as new drugs.

In many cases, scientists repeatedly screen crude plant medicines in lab experiments to see if any compounds show a particular effect in cells grown in a dish or in cell-free assays. If a compound shows a positive effect in cells or test tubes, it could potentially be used as a , and the scientists go on to test it in animals. However, this process is a lot of work and doesn't account for changes that can happen to drugs when they enter the body - enzymes in the blood and liver can metabolize drugs into various forms called metabolites. In addition, some areas of the body, such as the brain, are difficult to access for many drugs, and only certain drugs or their metabolites will enter these tissues.

"The candidate compounds identified in traditional benchtop drug screens of plant medicines are not always true active compounds, because these assays ignore bio-metabolism and tissue distribution," explains Chihiro Tohda, senior author on the recent study published in Frontiers in Pharmacology. "So, we aimed to develop more efficient methods to identify authentic active compounds that take these factors into account."

The scientists were interested in finding active compounds for Alzheimer's disease in Drynaria Rhizome, a traditional plant medicine. They used mice with a genetic mutation as a model for Alzheimer's disease. This mutation gives the mice some characteristics of Alzheimer's disease, including reduced memory and a buildup of specific proteins in the brain, called amyloid and . This means that the mice are a useful tool to test potential Alzheimer's disease treatments.

Initially, the researchers mashed the plant up and treated the mice orally using this crude plant extract. They found that the plant treatment reduced memory impairments and levels of amyloid and tau proteins in their brains. In a key step, the team then examined the mouse brain tissue, where the treatment is needed, 5 hours after they treated the mice with the extract. They found that three compounds from the plant had made it into the brain - these were a compound called naringenin and two naringenin metabolites.

The researchers then treated the mice with pure naringenin and noticed the same improvements in memory deficits and reductions in amyloid and tau proteins, meaning that naringenin and its metabolites were likely the active compounds in the plant. They found a protein called CRMP2 that naringenin binds to in neurons, which causes them to grow, suggesting that this could be the mechanism by which naringenin can improve Alzheimer's disease symptoms.

The team hope that the technique can be used to identify other treatments. "We are applying this method to discover for other diseases such as spinal cord injury, depression and sarcopenia," explains Tohda.

Explore further: Scientists discover two repurposed drugs that arrest neurodegeneration in mice

More information: Zhiyou Yang et al, A Systematic Strategy for Discovering a Therapeutic Drug for Alzheimer?s Disease and Its Target Molecule, Frontiers in Pharmacology (2017). DOI: 10.3389/fphar.2017.00340

Related Stories

Scientists discover two repurposed drugs that arrest neurodegeneration in mice

April 20, 2017
A team of scientists who a few years ago identified a major pathway that leads to brain cell death in mice, have now found two drugs that block the pathway and prevent neurodegeneration. The drugs caused minimal side effects ...

Gut bacteria make pomegranate metabolites that may protect against Alzheimer's disease

December 9, 2015
In a quest to stay healthy, many people are seeking natural ways to prevent neurodegenerative diseases. Recent studies show that pomegranate extract, which is a rich source of disease-fighting polyphenols, can help protect ...

Caffeine boosts enzyme that could protect against dementia, study finds

March 7, 2017
A study by Indiana University researchers has identified 24 compounds—including caffeine—with the potential to boost an enzyme in the brain shown to protect against dementia.

Boosting a cell-protecting protein may help slow Alzheimer's disease progression

March 2, 2017
A new study of Alzheimer's disease by Fiona Kerr and Linda Partridge at University College London, uses mouse and fruit fly models to show that Keap1, which inhibits the protective protein Nrf2, is a promising target for ...

Details revealed for how plant creates anticancer compounds

March 21, 2016
Catharanthus roseus (rosy periwinkle) is a plant that produces organic compounds used to treat cancer, arrhythmia, and other medical conditions. A Japanese research group has revealed the details of the metabolism process ...

Recommended for you

New mechanism detected in Alzheimer's disease

October 13, 2017
McGill University researchers have discovered a cellular mechanism that may contribute to the breakdown of communication between neurons in Alzheimer's disease.

Neuroscientists identify genetic changes in microglia in a mouse model of neurodegeneration and Alzheimer's disease

October 13, 2017
Microglia, immune cells that act as the central nervous system's damage sensors, have recently been implicated in Alzheimer's disease.

Green tea extract delivers molecular punch to disrupt formation of neurotoxic species

October 11, 2017
Green tea is widely considered to be beneficial for the brain. The antioxidant and detoxifying properties of green tea extracts help fight catastrophic diseases such as Alzheimer's. However, scientists have never fully understood ...

Menopause triggers metabolic changes in brain that may promote Alzheimer's

October 10, 2017
Menopause causes metabolic changes in the brain that may increase the risk of Alzheimer's disease, a team from Weill Cornell Medicine and the University of Arizona Health Sciences has shown in new research.

Being unaware of memory loss predicts Alzheimer's disease, new study shows

October 10, 2017
While memory loss is an early symptom of Alzheimer's disease, its presence doesn't mean a person will develop dementia. A new study at the Centre for Addiction and Mental Health (CAMH) has found a clinically useful way to ...

Alzheimer's gene poses both risk and benefits

October 9, 2017
Scientists drilling down to the molecular roots of Alzheimer's disease have encountered a good news/bad news scenario. A major player is a gene called TREM2, mutations of which can substantially raise a person's risk of the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.