Mapping how words leap from brain to tongue

June 19, 2017
Credit: Wikimedia Commons

When you look at a picture of a mug, the neurons that store your memory of what a mug is begin firing. But it's not a pinpoint process; a host of neurons that code for related ideas and items—bowl, coffee, spoon, plate, breakfast—are activated as well. How your brain narrows down this smorgasbord of related concepts to the one word you're truly seeking is a complicated and poorly understood cognitive task. A new study led by San Diego State University neuroscientist Stephanie Ries, of the School of Speech, Language, and Hearing Sciences, delved into this question by measuring the brain's cortical activity and found that wide, overlapping swaths of the brain work in parallel to retrieve the correct word from memory.

Most adults can quickly and effortlessly recall as many as 100,000 regularly used words when prompted, but how the brain accomplishes this has long boggled scientists. How does the brain nearly always find the needle in the haystack? Previous work has revealed that the brain organizes ideas and words into semantically related clusters. When trying to recall a specific word, the brain activates its cluster, significantly reducing the size of the haystack.

To figure out what happens next in that process, Ries and colleagues asked for help from a population of people in a unique position to lend their brainpower to the problem: undergoing brain surgery to reduce their epileptic seizures. Before surgery, neurosurgeons monitor their brain activity to figure out which region of the brain is triggering the patients' seizures, which requires the patients to wear a grid of dozens of electrodes placed directly on top of the cortex, the outermost folded layers of the brain.

While the patients were hooked up to this grid in a hospital and waiting for a seizure to occur, Ries asked if they'd be willing to participate in her research. Recording brain signals directly from the cortical surface affords neuroscientists like Ries an unparalleled look at exactly when and where neurons are communicating with one another during tasks.

"During that period, you have time to do cognitive research that's impossible to do otherwise," she said. "It's an extraordinary window of opportunity."

For the recent study, nine patients agreed to participate. In 15 minute-sessions, she and her team would show the patients an item on a computer screen—musical instruments, vehicles, houses—then ask them to name it as quickly as possible, all while tracking their .

They measured the separate neuronal processes involved with first activating the item's conceptual cluster, then selecting the proper word. Surprisingly, they discovered the two processes actually happen at the same time and activate a much wider network of than previously suspected. As expected, two regions known to be involved in language processing lit up, the left and the posterior temporal cortex. But so did several other regions not traditionally linked to language, including the medial and middle frontal gyri, the researchers reported in the Proceedings of the National Academy of Sciences.

"This work shows the word retrieval process in the brain is not at all as localized as we previously thought," Ries said. "It's not a clear division of labor between brain regions. It's a much more complex process."

Learning exactly how the accomplishes these tasks could one day help speech-language pathologists devise strategies for treating disorders that prevent people from readily accessing their vocabulary.

"Word retrieval is usually effortless in most people, but it is routinely compromised in patients who suffer from anomia, or word retrieval difficulty," Ries said. "Anomia is the most common complaint in patients with stroke-induced aphasia, but is also common in neurodegenerative diseases and normal aging. So it is critical to understand how this process works to understand how to help make it better."

Explore further: Studies of epilepsy patients uncover clues to how the brain remembers

More information: Stephanie K. Ri?s et al, Spatiotemporal dynamics of word retrieval in speech production revealed by cortical high-frequency band activity, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1620669114

Related Stories

Studies of epilepsy patients uncover clues to how the brain remembers

June 2, 2017
In a pair of studies, scientists at the National Institutes of Health explored how the human brain stores and retrieves memories. One study suggests that the brain etches each memory into unique firing patterns of individual ...

Team measures effects of sentence structure in the brain

April 19, 2017
When we learn to read, we say one word at a time. But how does the brain actually put words together when we read full sentences?

Our brain benefits from an overlap in grammar when learning a foreign language

June 29, 2016
Researchers from Nijmegen have for the first time captured images of the brain during the initial hours and days of learning a new language. They use an artificial language with real structures to show how new linguistic ...

Speeding up comprehension with grasping actions

December 21, 2016
Hearing or seeing a word doesn't mean that it is immediately understood. The brain must first recognize the letters as such, put them together, and "look up" what the word means in its mental lexicon. In an experiment, cognitive ...

Motor cortex contributes to word comprehension

February 16, 2017
Researchers from HSE, Northumbria University, and Aarhus University have experimentally confirmed that comprehension of a word's meaning involves not only the 'classic' language brain centres but also the cortical regions ...

Brain's iconic seat of speech goes silent when we actually talk

February 17, 2015
For 150 years, the iconic Broca's area of the brain has been recognized as the command center for human speech, including vocalization. Now, scientists at UC Berkeley and Johns Hopkins University in Maryland are challenging ...

Recommended for you

'Selfish brain' wins out when competing with muscle power, study finds

October 20, 2017
Human brains are expensive - metabolically speaking. It takes lot of energy to run our sophisticated grey matter, and that comes at an evolutionary cost.

Researchers find shifting relationship between flexibility, modularity in the brain

October 19, 2017
A new study by Rice University researchers takes a step toward what they see as key to the advance of neuroscience: a better understanding of the relationship between the brain's flexibility and its modularity.

Want to control your dreams? Here's how

October 19, 2017
New research at the University of Adelaide has found that a specific combination of techniques will increase people's chances of having lucid dreams, in which the dreamer is aware they're dreaming while it's still happening ...

Brain training can improve our understanding of speech in noisy places

October 19, 2017
For many people with hearing challenges, trying to follow a conversation in a crowded restaurant or other noisy venue is a major struggle, even with hearing aids. Now researchers reporting in Current Biology on October 19th ...

Investigating the most common genetic contributor to Parkinson's disease

October 19, 2017
LRRK2 gene mutations are the most common genetic cause of Parkinson's disease (PD), but the normal physiological role of this gene in the brain remains unclear. In a paper published in Neuron, Brigham and Women's Hospital ...

Brain takes seconds to switch modes during tasks

October 19, 2017
The brain rapidly switches between operational modes in response to tasks and what is replayed can predict how well a task will be completed, according to a new UCL study in rats.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.