For mice, too much muscle glycogen impairs endurance exercise performance

July 5, 2017, Cell Press
This visual abstract depicts how although glycogenin is thought to be essential for glycogen synthesis, Testoni et al. show that glycogenin-deficient animals still make glycogen. Surprisingly, glycogen accumulates in striated muscle affecting functionality, including decreased exercise endurance. These findings impact our understanding of glycogen storage disease XV where patients lack glycogenin-1 and accumulate muscle glycogen. Credit: Testoni et al./Cell Metabolism 2017

In 2009, Usain Bolt set the world record in the 100-meter dash, thanks in large part to a carb called glycogen. This molecule is stored in skeletal muscle and later released to fuel short and intense bouts of physical activity. The basics of glycogen biology are thought to be well established, but a study in rodents published July 5th in the journal Cell Metabolism turns long-standing assumptions on their head. Surprisingly, the researchers found that glycogen synthesis does not require a protein called glycogenin, and that high glycogen levels actually impair endurance muscle performance in mice.

"These findings change our perspective on synthesis and the role of glycogenin in muscle physiology," says senior author Joan Guinovart of the Institute for Research in Biomedicine (IRB Barcelona). "From a clinical standpoint, our study also unravels the mechanisms underlying glycogen storage disease XV, a genetic disorder that was recently described in humans for the first time."

In skeletal muscle, fast-twitch glycolytic fibers use glycogen as the main energy source for anaerobic metabolism, serving to sustain brief periods of high-intensity activity. On the other hand, slow-twitch fibers use oxidative metabolism for prolonged low-intensity activity. For decades, scientists have known that muscle glycogen levels are strongly associated with strenuous exercise performance. It is generally accepted that glycogen synthesis requires an enzyme called glycogenin, which catalyzes the formation of a sugar chain consisting of glucose molecules.

The importance of proper glycogen synthesis is illustrated by a fatal neurodegenerative condition called Lafora disease. Due to the build-up of toxic glycogen clumps in neurons and other cell types, patients with this disease commonly experience severe epileptic seizures, motor impairment, muscle spasms, and dementia. Guinovart and his team figured that blocking glycogen synthesis by depleting glycogenin could provide a means to effectively treat these patients.

To test this idea, Guinovart and first author Giorgia Testoni of IRB Barcelona generated glycogenin-deficient mice and examined the effects on glycogen accumulation in cells. To their surprise, they found high quantities of glycogen in the muscle tissue of these mice. Despite higher glycogen levels, glycogenin-deficient mice underperformed normal mice, reaching exhaustion earlier and covering a shorter distance while running on a treadmill. The mice had a 30% slower running time than usual and covered 50% less distance. The reason for the poor endurance performance of glycogenin-deficient mice was that slow-twitch muscles in the calves started to resemble fast-twitch muscles, switching from oxidative metabolism to glycolytic metabolism.

Contrary to their original expectations, Guinovart and his team did not discover a new treatment option for patients with Lafora disease, because glycogenin deficiency did not prevent glycogen accumulation as they had originally suspected. However, the results may explain the muscular defects of patients with glycogen storage disease XV. As first reported in 2014, patients with this condition show glycogenin depletion in and weakness, despite high glycogen levels.

"The striking similarities between human patients and the glycogenin-deficient we used in our study could open new avenues to understanding the molecular basis of glycogen storage disease XV and developing effective treatments for this newly described disease," Guinovart says.

Explore further: Genetic variant impairs glycogen synthesis

More information: Cell Metabolism, Testoni et al.: "Lack of glycogenin causes glycogen accumulation and muscle function impairment" DOI: 10.1016/j.cmet.2017.06.008

Related Stories

Genetic variant impairs glycogen synthesis

January 29, 2008
Glycogen is stored in skeletal muscles and liver and is of central importance as a first source of energy for muscle contractions, especially during high intensity exercise. Human genetic disorders primarily affecting skeletal ...

Study identifies potential new avenue for treating pompe disease

July 27, 2016
Researchers at Duke Health have identified a potential new avenue for treating Pompe disease, a rare condition caused by the build-up of glycogen, a storage form of sugar, in cardiac and skeletal muscle, the liver and other ...

Glycogen accumulation in neurons causes brain damage and shortens the lives of flies and mice

May 2, 2012
Collaborative research by groups headed by scientists Joan J. Guinovart and Marco Milán at the Institute for Research in Biomedicine (IRB Barcelona) has revealed conclusive evidence about the harmful effects of the accumulation ...

Researchers reveal the dual role of brain glycogen

February 27, 2014
In 2007, in an article published in Nature Neuroscience, scientists at the Institute for Research in Biomedicine (IRB Barcelona) headed by Joan Guinovart, an authority on glycogen metabolism, reported that in Lafora Disease ...

Diabetes discovery could lead to more effective drugs

February 3, 2016
The formation of type 2 diabetes is directly related to how our muscles convert sugar, a landmark new study has found.

Mouse model brings new perspectives on Lafora disease

August 29, 2011
Short-term energy storage in animal cells is usually achieved through the accumulation of glucose, in the form of long and branched chains, known as glycogen. But when this accumulation happens in neurons it is fatal, causing ...

Recommended for you

3-D bioPen: A hydrogel injection to regenerate cartilage

September 25, 2018
Highly specialized cartilage is characteristically avascular and non-neural in composition with low cell numbers in an aliphatic environment. Despite its apparent simplicity, bioengineering regenerative hyaline cartilage ...

Skin wounds in older mice are less likely to scar

September 25, 2018
Researchers have discovered a rare example in which the mammalian body functions better in old age. A team at the University of Pennsylvania found that, in skin wounds in mice, being older increased tissue regeneration and ...

Study finds that enzymes 'partner up' to accelerate cancer, aging diseases

September 25, 2018
A new study from molecular biologists at Indiana University has identified cellular processes that appear to supercharge both the growth and shrinkage of the chemical "caps" on chromosomes associated with aging, called telomeres.

Extracellular RNA in urine may provide useful biomarkers for muscular dystrophy

September 25, 2018
Massachusetts General Hospital (MGH) researchers have found that extracellular RNA (exRNA) in urine may be a source of biomarkers for the two most common forms of muscular dystrophy, noninvasively providing information about ...

Evidence that addictive behaviors have strong links with ancient retroviral infection

September 24, 2018
New research from an international team led by Oxford University's Department of Zoology and the National-Kapodistrian University of Athens, published today in Proceedings of the National Academy of Sciences (PNAS), shows ...

Taking a catnap? Mouse mutation shown to increase need for sleep

September 24, 2018
Sleep is vital for adequate functioning across the animal kingdom, but little is known about the physiological mechanisms that regulate it, or the reasons for natural variation in people's sleep patterns.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.