Scientists develop imaging method for measuring glutathione in real time

July 13, 2017, Baylor College of Medicine

Glutathione is the most abundant natural antioxidant in cells. It protects them from damage and regulates a number of important functions, including cell proliferation and death, the synthesis of the genetic material and proteins and the activation of gene expression. These functions are regulated by changes in the concentration of glutathione, but the current methods do not allow for real-time measurements of glutathione levels inside cells. Researchers at Baylor College of Medicine, Texas Children's Hospital and Rice University have moved the field of glutathione research a step forward by developing a fluorescent probe - they called it RealThiol - that can measure real-time changes of glutathione concentration in living cells. Published in Nature Communications, this study offers a new tool to investigate the roles glutathione plays in aging, health and diseases such as cancer, Alzheimer's and Parkinson's, cardiovascular conditions and diabetes, among others.

"Until now, methods for measuring glutathione levels inside cells only allowed for one time point measurements," said corresponding author Dr. Jin Wang, associate professor of pharmacology and chemical biology and of molecular and cellular biology at Baylor. "We wanted to develop a method that would allow biologists to measure how glutathione concentration inside cells changes in ."

How to measure glutathione changes in real time

Previous methods are based on irreversible chemical reactions that capture all the glutathione that is inside the cells, providing a one-time snapshot of its amount. Wang, who was trained as a physical organic chemist, and his colleagues looked for reversible chemical reactions that would capture and release glutathione, allowing for multiple measurements inside the same cell.

"Other researchers had succeeded at developing chemical probes for measuring the dynamic changes of calcium and zinc in cells using reversible chemical reactions," Wang said. "However, some researchers thought that the same could not be accomplished for glutathione."

In 2015, Wang and his colleagues published a proof of concept that a reversible reaction could be used to measure glutathione. Further research led to the current publication.

"The key contribution of the current study is that we optimized the and made the reaction much faster; both the forward and the reverse can be completed within one minute, allowing us to follow the dynamic changes on glutathione in living cells," Wang said. "Our method requires very small amounts of the probe, which results in little toxicity and poses minimal perturbance of the antioxidant capacity in the , and the probe can be used in various applications, from microscopy to cell sorting experiments."

Using RealThiol, the researchers measured enhanced antioxidant capability of activated neurons and dynamic glutathione changes during ferroptosis, a form of cell death. The Wang group is currently developing glutathione probes with different sub-cellular specificities. This new tool set can potentially generate knowledge that could help develop new strategies to treat diseases involving -mediated processes.

Explore further: Research shows oral supplement increases body's storage of antioxidant

More information: Nature Communications (2017). DOI: 10.1038/NCOMMS16087

Related Stories

Research shows oral supplement increases body's storage of antioxidant

April 23, 2013
(Medical Xpress)—Oral supplementation of glutathione is effective in increasing the body's stores of the antioxidant, said Penn State College of Medicine researchers in study results presented at a conference today (April ...

Newly-revealed amino acid function could be used to boost antioxidant levels

December 14, 2016
A Japanese research team has become the first in the world to discover that 2-aminobutyric acid (2-AB) is closely involved in the metabolic regulation of the antioxidant glutathione, and that it can effectively raise levels ...

Boosting levels of known antioxidant may help resist age-related decline

October 24, 2016
Researchers at Oregon State University have found that a specific detoxification compound, glutathione, helps resist the toxic stresses of everyday life - but its levels decline with age and this sets the stage for a wide ...

Recommended for you

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

Scientists unleash power of genetic data to identify disease risk

January 16, 2018
Massive banks of genetic information are being harnessed to shed new light on modifiable health risks that underlie common diseases.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.