Simulations signal early success for fractal-based retinal implants

July 27, 2017, University of Oregon
Credit: CC0 Public Domain

Computer simulations of electrical charges sent to retinal implants based on fractal geometry have University of Oregon researchers moving forward with their eyes focused on biological testing.

That is potential down-the-road good news for people facing vision loss from retinal diseases, such as macular degeneration that, alone, incurs costs exceeding $340 billion globally, according to the Brightfocus Foundation.

"What we've demonstrated is that using a should allow us, in principle, to deliver 20/80 vision," said physics professor Richard P. Taylor, head of the UO's Materials Science Institute.

People with acuity of 20/80 are able to see objects at 20 feet away that those with normal or 20/20 vision can see from a distance of 80 feet. According to the Social Security Act in the United States, any person with a corrected vision of 20/200 or less is considered blind.

In their simulations, the UO researchers studied the performance of their bio-inspired implant, which would be inserted behind the eye's retina. The implant features an array of fractal electrodes designed to stimulate retinal . The results were published in the journal Scientific Reports.

Fractal objects have repeating patterns at many scales and are seen in nature in such things as tree branches, rivers, snowflakes, blood vessels and neurons.

The idea behind Taylor's implant is to exploit electrodes that have the same fractal shape as the neurons with which they will interact. Currently used feature shapes based on traditional Euclidean geometry such as squares.

In human clinical trials with Euclidean-based devices, visual acuity has only achieved 20/1260 for implants placed in front of the retina. Only one patient achieved 20/546 with a device placed behind the retina; 86 percent of cases resulted in no restored acuity, the researchers noted in their paper.

In their computer simulations—done under a grant from the W.M. Keck Foundation - the UO researchers compared the ability of fractal and Euclidean electrodes to stimulate neurons in the retina. The fractal version stimulated 90 percent more neurons while using less voltage.

Because of their repeating patterns, fractal electrodes provide a large surface area that holds more electrical charge than the Euclidean electrodes, said the study's lead author, William J. Watterson, a doctoral student of Taylor's. The large voltage generated by this charge stimulates more neurons.

"Operating under identical conditions in our simulations, we've shown that a single fractal stimulates all of the target neurons, while the Euclidean electrode connects with only 10 percent of them," Watterson said.

Fractal implants, which act much like a pixel array at the back of a camera, can efficiently utilize more pixels within the confined space at the back of the eye, providing electrically-restored vision at a higher resolution, Watterson said. In retina-damaged eyes, the cones and rods that do such intermediate work disappear. The implants would stimulate the still-intact neurons.

There is a long way to go before achieving that reality in people, he said. The simulated results provide information that can help design miniature versions of the implants for testing in mice, where researchers hope to gain a preliminary measure of how well such devices may restore vision to humans.

"We want to make the pixel smaller but make use of ," he said. "In this study, we showed that by just doing a rearrangement of the top electrode into a then we can stimulate the within the open-circuit voltage of silicon photodiodes."

In the eyes, electrical charges come from incoming light.

Taylor's former doctoral student Rick Montgomery, now a data scientist at Fluence Analytics in New Orleans, also was a co-author on the Nature paper.

Pursuit of a fractal-based retinal is covered under a U.S. patent, which applies to any -inspired device designed for biomedical purposes. Taylor, the UO, Taylor's research collaborator Simon Brown, and Brown's home institution, the University of Canterbury in New Zealand, hold the patent.

Explore further: Photovoltaic retinal implant could restore functional sight, researchers say

More information: W. J. Watterson et al, Fractal Electrodes as a Generic Interface for Stimulating Neurons, Scientific Reports (2017). DOI: 10.1038/s41598-017-06762-3

Related Stories

Photovoltaic retinal implant could restore functional sight, researchers say

April 28, 2015
A team led by Stanford University researchers has developed a wireless retinal implant that they say could restore vision five times better than existing devices.

Researchers discover way to improve image sharpness for blind people with retinal implants

December 16, 2015
Retinal implants that deliver longer pulses of electrical current may noticeably improve image sharpness for individuals who have lost their sight due to retinitis pigmentosa, according to a new study by researchers from ...

Recommended for you

Satellite imaging techniques may help reduce preventable vision loss

May 11, 2018
By adapting pattern recognition techniques used to assess satellite images, scientists have devised a novel way to diagnose blinding eye diseases, such as age-related macular degeneration.

Ophthalmologists link immunotherapy with a serious eye condition

May 7, 2018
New immunotherapy treatments offer a remarkable chance for survival for patients with advanced melanoma and hard-to-treat cancers of the bladder, kidney and lung.

Burnout, depression can affect ophthalmology residents, study finds

May 4, 2018
A new study led by Brown University researchers finds that ophthalmology residents across the U.S. face a substantial burden of burnout and depression, which may affect not only the residents themselves but also the quality ...

AI better than most human experts at detecting cause of preemie blindness

May 3, 2018
An algorithm that uses artificial intelligence can automatically and more accurately diagnose a potentially devastating cause of childhood blindness than most expert physicians, a paper published in JAMA Ophthalmology suggests.

New diagnostic technique picks up the S in vision

May 1, 2018
A new technique that could help improve diagnosis of vision disorders has been successfully tested at the University of Bradford, UK.

A bit of dark chocolate might sweeten your vision

April 26, 2018
It may not replace prescription glasses, but a few bites of dark chocolate might offer a slight and temporary bump up in vision quality, new research suggests.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

EmceeSquared
not rated yet Jul 27, 2017
"Pursuit of a fractal-based retinal implant is covered under a U.S. patent, which applies to any fractal-inspired device designed for biomedical purposes."

There are more different fractal patterns than there are different squares (since fractals have more independent parameters than squares do). Yet that patent prohibits anyone else from developing alternate fractal patterns. A patent on "any euclidean-inspired devices designed for biomedical purposes" would be narrower, but still obviously absurd. And these patent holders gained their monopoly without even making a device, but rather through simulations.

It's not just ethically wrong. It severely limits progress in science and the useful arts, the opposite of the Constitutional rationalization for constraining free speech for the benefit of capitalism.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.