Tiny cellular antennae key to fat formation in muscle

July 13, 2017
Seen through the microscope, a primary cilium (top; red and green) is seen protruding from a FAP (fibro/adipogenic progenitor) cell (blue). Credit: Daniel Kopinke

Like it or not, as we age, our muscle cells are slowly exchanged, one by one, for fat cells. This process quickens when we injure a muscle, and an extreme form of this process is also seen in muscle-wasting diseases such as Duchenne muscular dystrophy (DMD). Now, scientists at UC San Francisco have shown that cellular antennae called cilia, found on fat-forming cells interspersed in muscle, play a key role in this muscle-to-fat transformation.

The findings, revealed in experiments with mice, and published July 13, 2017 in Cell, suggest a previously unsuspected connection between and tissue renewal. This fresh molecular understanding could open up new prospects for regenerative medicine, and one day enable researchers to improve muscle renewal during aging and disease.

High levels of intramuscular fat have long been associated with a loss of strength and impaired mobility, as well as more falls in elderly or obese individuals, and in patients with DMD. "The frailty of age is a huge biomedical problem," said Jeremy Reiter, MD, PhD, a professor of biochemistry and biophysics at UCSF and senior author of the new paper. "This study helps pave the way to learn how muscles normally age, and provides a new way to possibly improve ."

Reiter has a long-standing research interest in tiny cellular appendages called primary cilia, which look a bit like the cellular tentacles that paramecia and other single-celled critters use to move and gather food. But unlike those , primary cilia don't move at all. Instead, they stand stiff and solitary on the surface of nearly all of our cells, including neurons, skin cells, bone cells and certain stem cells.

For centuries, these little attachments were largely ignored, and considered a vestigial structure with no known function. But "there has been a renaissance over the past decade in figuring out what these cilia do," Reiter said, and recent work by members of his lab and others has revealed that primary cilia act much like cellular antennae, receiving molecular cues from neighboring cells, and processing environmental signals such as light, temperature, salt balance, and even gravity.

Some of the best-studied examples of cilia function come from early stages of embryonic development, when the arms and legs are just tiny "buds" on the embryo. The limb buds receive cues from a fundamental cell-signaling pathway, known as Hedgehog, that specify the number of digits you will have on your hands and feet, and tell the pinky to develop differently than the thumb. Defects in cilia can disrupt how cells interpret those signals, leading to extra fingers or toes.

To understand if primary cilia have a role beyond development, and play a part in maintaining adult tissues, Daniel Kopinke, PhD, a postdoctoral fellow in the Reiter lab and first author of the new study, set out to ask whether signaling by cilia is involved in muscles' ability to heal following injury.

Previous work has shown that when muscle is injured, fat-forming cells that live alongside , called fibro/adipogenic progenitors (FAPs), divide and differentiate into . Kopinke found that, unlike muscle cells, these fat-forming FAPs are more likely to carry , and that muscle injury further increased the abundance of FAPs with cilia. These observations suggested that cilia might be playing an important role in fat formation.

To test this hypothesis, the research team used two mouse models of —an acute injury model created by injecting damaging agents into mouse muscles, and a chronic injury model with progressive loss of such as that seen in in DMD. When the scientists genetically blocked the ability of FAPs to form cilia, both injury models showed lower amounts of fat in muscle. What's more, the loss of cilia not only led to the loss of fat, but also aided .

"That was unexpected," Kopinke said. "We converted muscle in a mouse model of DMD into muscle that was more like that of a normal mouse."

Through a series of experiments, the group discovered that genetically engineering without cilia had resulted in a low-level activation of the Hedgehog pathway, which was enough to block fatty degeneration of skeletal muscle. When the researchers used other methods to amplify Hedgehog signaling, mouse muscle again became less fatty.

"I was sitting at the microscope and thought, 'Where's all the fat? It's gone!'" Kopinke said, recalling his eureka moment when he made the Hedgehog connection. "I was almost dancing."

With further investigation, the researchers found that a key protein in the Hedgehog pathway called TIMP3 was responsible for the effect. By using a small molecule called batimastat, which mimics the effects of TIMP3, the researchers were able to block injury-induced fat formation in muscle. The team is now looking into other molecules that could have the same effect, which could potentially lead to treatments for age- and injury-related muscle loss in humans.

"Now for the first time we have a handle on the cell type that turns muscle into fat, and we have a handle on the signaling pathway that controls the conversion," Kopinke said. "Maybe one day we could use this knowledge to improve function."

Explore further: Scientists find cause of facial widening defects

Related Stories

Scientists find cause of facial widening defects

November 1, 2016
Widening across the forehead and nose occurs when loss of cilia at the surface of the cells disrupts internal signaling and causes two GLI proteins to stop repressing midfacial growth. Ching-Fang Chang and Samantha Brugmann ...

Stem cells may be the key to staying strong in old age

June 6, 2017
University of Rochester Medical Center researchers have discovered that loss of muscle stem cells is the main driving force behind muscle decline in old age in mice. Their finding challenges the current prevailing theory ...

Keratin hydrogels show significant potential to regenerate lost muscle tissue and function

April 27, 2017
The use of human hair-derived keratin biomaterials to regenerate skeletal muscle has shown promise in new research that documents significant increases in both new muscle tissue formation and muscle function among mouse models ...

Promoting muscle regeneration in a mouse model of muscular dystrophy

April 1, 2013
Duchenne muscular dystrophy (DMD) is a degenerative skeletal muscle disease caused by mutations in the protein dystrophin. Dystrophin functions to protect muscle cells from injury and loss of functional dystrophin results ...

Recommended for you

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

New breast cell types discovered by multidisciplinary research team

November 20, 2017
A joint effort by breast cancer researchers and bioinformaticians has provided new insights into the molecular changes that drive breast development.

Brain cell advance brings hope for Creutzfeldt-Jakob disease

November 20, 2017
Scientists have developed a new system to study Creutzfeldt-Jakob disease in the laboratory, paving the way for research to find treatments for the fatal brain disorder.

Hibernating ground squirrels provide clues to new stroke treatments

November 17, 2017
In the fight against brain damage caused by stroke, researchers have turned to an unlikely source of inspiration: hibernating ground squirrels.

Molecular guardian defends cells, organs against excess cholesterol

November 16, 2017
A team of researchers at the Harvard T. H. Chan School of Public Health has illuminated a critical player in cholesterol metabolism that acts as a molecular guardian in cells to help maintain cholesterol levels within a safe, ...

Prototype ear plug sensor could improve monitoring of vital signs

November 16, 2017
Scientists have developed a sensor that fits in the ear, with the aim of monitoring the heart, brain and lungs functions for health and fitness.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.