Study of inherited herpes virus finds links to ancient humans

August 30, 2017
Credit: CC0 Public Domain

An international study of integrated HHV-6 has discovered that a small number of human ancestors, one from about 24,000 years ago, have been responsible for transmitting ancient strains of the virus to individuals today – affecting about a million people in the U.K. alone.

Research led by the University of Leicester collected DNA samples from unrelated people who were carriers of the human herpesvirus 6, mostly from the U.K. and Europe but also from Japan, China and Pakistan. The researchers found that some of the inherited HHV-6 genomes are very similar to each other and are also located in the same chromosome in people having no known family relationship. This showed that the HHV-6 genomes, which the scientists sequenced, originated in a small number of ancestors thousands of years ago.

The researchers also found that most of the inherited HHV-6 genomes are intact and therefore may be able to reactivate as viruses. The study makes an important contribution towards understanding the possible impact of inherited HHV-6 on the 1-2 percent of the U.K. population who carry it.

Dr Nicola Royle of the Department of Genetics and Genome Biology at the University of Leicester, who headed the study, said: "There are two types of HHV-6 (HHV-6A and HHV-6B) that have different biological, immunological, pathological and molecular properties.

"Initial infection by HHV-6 usually occurs in early childhood. Then, like most herpesviruses, HHV-6 enters a state of latency and persists for life in a small number of cells. Reactivation of latent HHV-6 can have severe consequences and often occurs in patients with a compromised immune system, for example in patients undergoing chemotherapy or haematopoietic stem cell (HSC) therapy, in particular when the stem cells are from cord blood.

"Unexpectedly, about 1-2 percent of the U.K. population (650,000 -1.3 million people) have inherited a copy of the human herpesvirus 6 as if it is part of their own human genome. The inherited HHV-6 genome is large, containing at least 86 viral genes, and is carried in a telomere. Telomeres are the essential capping structure at the ends of chromosomes that stablise the and play important roles in cancer and ageing. Carriers of integrated HHV-6 bear one copy of the viral genome per cell and therefore have a high load of viral DNA. There has been very little research into the consequences for people who have inherited HHV-6, although a recent Canadian study has shown they have an increased risk of suffering from angina pectoris.

"We used molecular dating methods to compare, for example, the inherited HHV-6B genomes in five individuals from Sardinia, Orkney and England, and estimated that the most recent common ancestor with the inherited HHV-6B existed 24,500 ±10,600 years ago. Despite the antiquity of this inherited HHV-6B genome, it is intact and therefore potentially functional in all five carriers.

"We want to find out whether integrated HHV-6 carriers have an increased risk of disease or other adverse effects, and, if so, how this might be manifested. We think that there are three ways in which the inherited HHV-6 genome could have a deleterious effect:

The presence of the HHV-6 genome could compromise the function of the telomere in which it is integrated or affect the expression of nearby human genes

HHV-6 genes could be expressed from time to time over the carrier's lifetime and elicit an adverse immune response
the inherited HHV-6 genome could potentially reactivate and generate viable viruses.

"Our new research makes an important contribution towards understanding the possible impact of inherited HHV-6 on people that carry it. We now know that in Europe, and most likely in other populations as well, most inherited HHV-6 genomes have been inherited from a small number of ancestors thousands of years ago and still appear to have the potential to reactivate."

Stratification of carriers of inherited HHV-6 in modern populations due to common ancestry is an important consideration for genome-wide association studies that aim to identify disease risks for carriers. In addition the discoveries represent potentially important considerations for immune-compromised patients, in particular in the setting of organ transplantation and in stem cell therapy.

Explore further: New research on inherited herpesvirus may have implications for transplantation

More information: Enjie Zhang et al. Inherited chromosomally integrated human herpesvirus 6 genomes are ancient, intact and potentially able to reactivate from telomeres, Journal of Virology (2017). DOI: 10.1128/JVI.01137-17

Related Stories

New research on inherited herpesvirus may have implications for transplantation

September 20, 2013
Up to half a million people in Britain today may not know it, but in their genetic material they carry a particular form of herpesvirus 6 inherited from a parent.

Major genetic study identifies 12 new genetic variants for ovarian cancer

March 27, 2017
A genetic trawl through the DNA of almost 100,000 people, including 17,000 patients with the most common type of ovarian cancer, has identified 12 new genetic variants that increase risk of developing the disease and confirmed ...

How the African clawed frog got an extra pair of genes

October 19, 2016
The African clawed frog's ancestor inherited one set of chromosomes each from two different species and doubled its whole genome some 18 million years ago, according to an international research consortium led by Japanese ...

Inherited virus can cause cognitive dysfunction and fatigue

July 26, 2013
Many experts believe that chronic fatigue syndrome (CFS) has several root causes including some viruses. Now, lead scientists Shara Pantry, Maria Medveczky and Peter Medveczky of the University of South Florida's Morsani ...

Recommended for you

Genome editing enhances T-cells for cancer immunotherapy

November 20, 2017
Researchers at Cardiff University have found a way to boost the cancer-destroying ability of the immune system's T-cells, offering new hope in the fight against a wide range of cancers.

A math concept from the engineering world points to a way of making massive transcriptome studies more efficient

November 17, 2017
To most people, data compression refers to shrinking existing data—say from a song or picture's raw digital recording—by removing some data, but not so much as to render it unrecognizable (think MP3 or JPEG files). Now, ...

US scientists try first gene editing in the body

November 15, 2017
Scientists for the first time have tried editing a gene inside the body in a bold attempt to permanently change a person's DNA to try to cure a disease.

Genetic mutation in extended Amish family in Indiana protects against aging and increases longevity (Update)

November 15, 2017
The first genetic mutation that appears to protect against multiple aspects of biological aging in humans has been discovered in an extended family of Old Order Amish living in the vicinity of Berne, Indiana, report Northwestern ...

Genetic variant prompts cells to store fat, fueling obesity

November 13, 2017
Obesity is often attributed to a simple equation: People are eating too much and exercising too little. But evidence is growing that at least some of the weight gain that plagues modern humans is predetermined. New research ...

Discovering a protein's role in gene expression

November 10, 2017
Northwestern Medicine scientists have discovered that a protein called BRWD2/PHIP binds to histone lysine 4 (H3K4) methylation—a key molecular event that influences gene expression—and demonstrated that it does so via ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.