Link between biological clock and aging revealed: Study shows low-calorie diet may help keep body young

August 10, 2017, University of California, Irvine
'Caloric restriction works by rejuvenating the biological clock in a most powerful way,' says Paolo Sassone-Corsi, director of UCI's Center for Epigenetics & Metabolism. Credit: IRB Barcelona

Scientists studying how aging affects the biological clock's control of metabolism have discovered that a low-calorie diet helps keep these energy-regulating processes humming and the body younger.

In a study appearing Aug. 10 in the journal Cell, Paolo Sassone-Corsi, director of the Center for Epigenetics & Metabolism at the University of California, Irvine, and colleagues reveal how circadian rhythms - or the body's - change as a result of physiological aging. The clock-controlled circuit that directly connects to the process of aging is based on efficient metabolism of energy within .

The Sassone-Corsi team tested the same group of mice at 6 months and 18 months, drawing tissue samples from the liver, the organ which operates as the interface between nutrition and energy distribution in the body. Energy is metabolized within cells under precise circadian controls.

The researchers found that the 24-hour cycle in the circadian-controlled metabolic system of older mice remained the same, but there were notable changes in the circadian mechanism that turns genes on and off based upon the cells' energy usage. Simply put, the older cells processed energy inefficiently.

"This mechanism works great in a young animal, but it basically shuts off in an old mouse," Sassone-Corsi said.

However, in a second group of aged mice that were fed a diet with 30 percent fewer calories for six months, energy processing within cells was more than unchanged.

"In fact, caloric restriction works by rejuvenating the biological clock in a most powerful way," Sassone-Corsi said. "In this context, a good clock meant good aging."

Collaborative confirmation

For a companion study detailed in Cell's current issue, a research team from the Barcelona Institute for Research in Biomedicine collaborated with the Sassone-Corsi team to test body clock functioning in stem cells from the skin of young and older mice. They too found that a low-calorie diet conserved most of the rhythmic functions of youth.

"The low-calorie diet greatly contributes to preventing the effects of physiological aging," said Salvador Aznar Benitah, who co-led the Spanish study. "Keeping the rhythm of stem cells 'young' is important because in the end these cells serve to renew and preserve very pronounced day-night cycles in tissue. Eating less appears to prevent tissue aging and, therefore, prevent from reprogramming their circadian activities."

According to the UCI and Barcelona researchers, these studies can help explain why a calorie-restricted diet slows down aging in mice. The implications for could be far-reaching.

The scientists said that it's important to further examine why metabolism has such a dominant effect on the stem cell aging process and, once the link that promotes or delays aging has been identified, to develop treatments that can regulate this link.

It's been shown in previous fruit fly studies that low-calorie diets can extend longevity, but the UCI and Barcelona research is the first to show that calorie restriction influences the body's ' involvement with the aging process in cells.

"These studies also present something like a molecular holy grail, revealing the cellular pathway through which aging is controlled," Sassone-Corsi said. "The findings provide a clear introduction on how to go about controlling these elements of aging in a pharmacological perspective."

The circadian connection

Sassone-Corsi and his colleagues first showed the circadian rhythm-metabolism link some 10 years ago, identifying the metabolic pathways through which a circadian enzyme protein called SIRT1 works. SIRT1 senses energy levels in cells; its activity is modulated by how many nutrients a cell is consuming. In addition, it helps cells resist oxidative and radiation-induced stress. SIRT1 has also been tied to the inflammatory response, diabetes and aging.

Explore further: Circadian rhythms can be modified for potential treatment of disorders

More information: Cell (2017). DOI: 10.1016/j.cell.2017.07.042

Related Stories

Circadian rhythms can be modified for potential treatment of disorders

January 22, 2013
(Medical Xpress)—UC Irvine-led studies have revealed the cellular mechanism by which circadian rhythms – also known as the body clock – modify energy metabolism and also have identified novel compounds that control ...

Strict genomic partitioning by biological clock separates key metabolic functions

July 31, 2014
Much of the liver's metabolic function is governed by circadian rhythms – our own body clock – and UC Irvine researchers have now found two independent mechanisms by which this occurs.

Nutrition influences metabolism through circadian rhythms

December 19, 2013
A high-fat diet affects the molecular mechanism controlling the internal body clock that regulates metabolic functions in the liver, UC Irvine scientists have found. Disruption of these circadian rhythms may contribute to ...

Lung tumors hijack metabolic processes in the liver, study finds

May 5, 2016
University of California, Irvine scientists who study how circadian rhythms—our own body clocks—control liver function have discovered that cancerous lung tumors can hijack this process and profoundly alter metabolism.

Recommended for you

Study examines disruption of circadian rhythm as risk factor for diseases

December 11, 2018
USC scientists report that a novel time-keeping mechanism within liver cells that helps sustain key organ tasks can contribute to diseases when its natural rhythm is disrupted.

New light-based technology reveals how cells communicate in human disease

December 11, 2018
Scientists at the University of York have developed a new technique that uses light to understand how cells communicate in human disease.

Researchers explore new way of killing malaria in the liver

December 8, 2018
In the ongoing hunt for more effective weapons against malaria, international researchers said Thursday they are exploring a pathway that has until now been little studied—killing parasites in the liver, before the illness ...

Study may offer doctors a more effective way to treat neuroblastoma

December 7, 2018
A very large team of researchers, mostly from multiple institutions across Germany, has found what might be a better way to treat patients with neuroblastoma, a type of cancer. In their paper published in the journal Science, ...

Progress made in transplanting pig hearts into baboons

December 6, 2018
A large team of researchers from several institutions in Germany, Sweden, Switzerland and the U.S. has transplanted pig hearts into baboons and kept them alive for an extended period of time. In their paper published in the ...

'Chemo brain' caused by malfunction in three types of brain cells, study finds

December 6, 2018
More than half of cancer survivors suffer from cognitive impairment from chemotherapy that lingers for months or years after the cancer is gone. In a new study explaining the cellular mechanisms behind this condition, scientists ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

tblakely1357
not rated yet Aug 10, 2017
Old news. It's been long known that an ascetic's lifestyle promotes a long lifespan. The question is, why would you want to live longer while practicing that lifestyle?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.