Link between biological clock and aging revealed: Study shows low-calorie diet may help keep body young

August 10, 2017, University of California, Irvine
'Caloric restriction works by rejuvenating the biological clock in a most powerful way,' says Paolo Sassone-Corsi, director of UCI's Center for Epigenetics & Metabolism. Credit: IRB Barcelona

Scientists studying how aging affects the biological clock's control of metabolism have discovered that a low-calorie diet helps keep these energy-regulating processes humming and the body younger.

In a study appearing Aug. 10 in the journal Cell, Paolo Sassone-Corsi, director of the Center for Epigenetics & Metabolism at the University of California, Irvine, and colleagues reveal how circadian rhythms - or the body's - change as a result of physiological aging. The clock-controlled circuit that directly connects to the process of aging is based on efficient metabolism of energy within .

The Sassone-Corsi team tested the same group of mice at 6 months and 18 months, drawing tissue samples from the liver, the organ which operates as the interface between nutrition and energy distribution in the body. Energy is metabolized within cells under precise circadian controls.

The researchers found that the 24-hour cycle in the circadian-controlled metabolic system of older mice remained the same, but there were notable changes in the circadian mechanism that turns genes on and off based upon the cells' energy usage. Simply put, the older cells processed energy inefficiently.

"This mechanism works great in a young animal, but it basically shuts off in an old mouse," Sassone-Corsi said.

However, in a second group of aged mice that were fed a diet with 30 percent fewer calories for six months, energy processing within cells was more than unchanged.

"In fact, caloric restriction works by rejuvenating the biological clock in a most powerful way," Sassone-Corsi said. "In this context, a good clock meant good aging."

Collaborative confirmation

For a companion study detailed in Cell's current issue, a research team from the Barcelona Institute for Research in Biomedicine collaborated with the Sassone-Corsi team to test body clock functioning in stem cells from the skin of young and older mice. They too found that a low-calorie diet conserved most of the rhythmic functions of youth.

"The low-calorie diet greatly contributes to preventing the effects of physiological aging," said Salvador Aznar Benitah, who co-led the Spanish study. "Keeping the rhythm of stem cells 'young' is important because in the end these cells serve to renew and preserve very pronounced day-night cycles in tissue. Eating less appears to prevent tissue aging and, therefore, prevent from reprogramming their circadian activities."

According to the UCI and Barcelona researchers, these studies can help explain why a calorie-restricted diet slows down aging in mice. The implications for could be far-reaching.

The scientists said that it's important to further examine why metabolism has such a dominant effect on the stem cell aging process and, once the link that promotes or delays aging has been identified, to develop treatments that can regulate this link.

It's been shown in previous fruit fly studies that low-calorie diets can extend longevity, but the UCI and Barcelona research is the first to show that calorie restriction influences the body's ' involvement with the aging process in cells.

"These studies also present something like a molecular holy grail, revealing the cellular pathway through which aging is controlled," Sassone-Corsi said. "The findings provide a clear introduction on how to go about controlling these elements of aging in a pharmacological perspective."

The circadian connection

Sassone-Corsi and his colleagues first showed the circadian rhythm-metabolism link some 10 years ago, identifying the metabolic pathways through which a circadian enzyme protein called SIRT1 works. SIRT1 senses energy levels in cells; its activity is modulated by how many nutrients a cell is consuming. In addition, it helps cells resist oxidative and radiation-induced stress. SIRT1 has also been tied to the inflammatory response, diabetes and aging.

Explore further: Circadian rhythms can be modified for potential treatment of disorders

More information: Cell (2017). DOI: 10.1016/j.cell.2017.07.042

Related Stories

Circadian rhythms can be modified for potential treatment of disorders

January 22, 2013
(Medical Xpress)—UC Irvine-led studies have revealed the cellular mechanism by which circadian rhythms – also known as the body clock – modify energy metabolism and also have identified novel compounds that control ...

Strict genomic partitioning by biological clock separates key metabolic functions

July 31, 2014
Much of the liver's metabolic function is governed by circadian rhythms – our own body clock – and UC Irvine researchers have now found two independent mechanisms by which this occurs.

Nutrition influences metabolism through circadian rhythms

December 19, 2013
A high-fat diet affects the molecular mechanism controlling the internal body clock that regulates metabolic functions in the liver, UC Irvine scientists have found. Disruption of these circadian rhythms may contribute to ...

Lung tumors hijack metabolic processes in the liver, study finds

May 5, 2016
University of California, Irvine scientists who study how circadian rhythms—our own body clocks—control liver function have discovered that cancerous lung tumors can hijack this process and profoundly alter metabolism.

Recommended for you

Scientists uncover DNA 'shield' with crucial roles in normal cell division

July 18, 2018
Scientists have made a major discovery about how cells repair broken strands of DNA that could have huge implications for the treatment of cancer.

Researchers report protein kinase as the switch controlling obesity and diabetes

July 18, 2018
One of the research lines targeting the worldwide obesity epidemic is the manipulation of brown adipose tissue, a 'good' type of fat that burns lipids to maintain an appropriate body temperature. Researchers at the Centro ...

Researchers develop novel bioengineering technique for personalized bone grafts

July 18, 2018
Scientists from the New York Stem Cell Foundation (NYSCF) Research Institute have developed a new bone engineering technique called Segmental Additive Tissue Engineering (SATE). The technique, described in a paper published ...

New retinal ganglion cell subtypes emerge from single-cell RNA sequencing

July 18, 2018
Single-cell sequencing technologies are filling in fine details in the catalog of life. Researchers at the University of Connecticut Health Center (UConn Health) and The Jackson Laboratory (JAX) have identified 40 subtypes ...

Scientists find malformations and lower survival rates in zebrafish embryos exposed to cannabinoids

July 16, 2018
Exposure to the main chemical components of cannabis has a detrimental effects on developing zebrafish embryos, according to a new study conducted by University of Alberta biologists.

Fetal gene therapy prevents fatal neurodegenerative disease

July 16, 2018
A fatal neurodegenerative condition known as Gaucher disease can be prevented in mice following fetal gene therapy, finds a new study led by UCL, the KK Women's and Children's Hospital and National University Health System ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

tblakely1357
not rated yet Aug 10, 2017
Old news. It's been long known that an ascetic's lifestyle promotes a long lifespan. The question is, why would you want to live longer while practicing that lifestyle?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.