Neuroscientists develop new forms of diagnosis and therapy for temporal lobe epilepsy

August 3, 2017, University of Freiburg
A new MRI scanning method enables precise tracking of the route of nerve fibers. Credit: Niels Schwaderlapp/Department of Radiology,Medical Physics.

What if you fell off your bicycle today and ten years later you developed epilepsy? Relationships like this might appear far-fetched but are entirely possible, say Freiburg researchers. Using the latest MRI scanning procedures, Prof. Dr. Carola Haas, Department of Neurosurgery, Prof. Dr. Jürgen Hennig, Department of Radiology, and Prof. Dr. Ulrich Egert, Department of Microsystems Engineering (MST) of the University of Freiburg, in cooperation with Prof. Dr. Jan Korvink of the Karlsruhe Institute of Technology, have shown how certain disorders of the hippocampus can initiate a drug resistant epilepsy. The team has discovered biomarkers that - if used for screening - could massively improve treatment options for epilepsy. The researchers have published their results in the online journal eLife.

Temporal lobe epilepsy affects millions of people worldwide. In many cases drugs offer insufficient improvement to patients' quality of life. In these cases, an operation to remove the affected brain tissue often appears to be the only solution. Most cases of epilepsy are caused by injury to the brain tissue, whether from febrile convulsions, a brain tumor, stroke or a bicycle accident. This can give rise to a series of seizures. Known as status epilepticus, this changes the tissue so that there is a tendency to suffer epileptic attacks. However it may be years before these recurrent attacks occur. And once this point is reached, drugs are often no longer any use to the patient. This could change if the process of development were recognized and stopped at an early stage, before the symptoms become permanent. This is what the research by Haas, Egert and Hennig investigated.

Using MRI scanning, the team examined the brain tissue of mice and humans. In the hippocampus, a structure on the inside edge of the temporal lobe, the researchers found valuable interrelationships: damage to the hippocampus does not automatically result in subsequent epilepsy, however, once there is a tendency to suffer attacks, such damage always appears to have been the root cause. In addition, the team also found that they could determine the severity of subsequent , by measuring the movement of water molecules in the . Frequently it is glial cells that have been restructured in some way that increase the risk of attacks.

So the pathological changes in the hippocampus could specifically serve as biomarkers for clinical diagnosis, in order to predict the disease progression. This not only enlarges the "therapeutic window"; doctors would also in future be able to undertake promising, personalized treatments, before having to operate on the patient. To begin with however, a clinical study will be necessary to obtain evidence of the real prognostic value of these biomarkers - it is hoped that this can take place at the widely renowned Departments of Neurology and Neurosurgery at the Freiburg University Medical Center.

Explore further: Link between malformations of the cerebral cortex and the occurrence of epilepsy

More information: Philipp Janz et al, Early tissue damage and microstructural reorganization predict disease severity in experimental epilepsy, eLife (2017). DOI: 10.7554/eLife.25742

Related Stories

Link between malformations of the cerebral cortex and the occurrence of epilepsy

February 11, 2016
Why does a structural irregularity in the temporal lobe make humans more susceptible to epileptic seizures? Experts have been searching for the answer to this question for a long time. A group of scientists at the Freiburg ...

Harnessing the brain's internal reserves to treat epilepsy

March 30, 2017
In a study published in Brain Research, biophysicists from the Institute of Theoretical and Experimental Biophysics (ITEB) of the Russian Academy of Sciences and MIPT have shown that drug-induced activation of the endocannabinoid ...

Researchers identify treatment for drug-resistant epilepsy

June 29, 2016
New research into the treatment of epilepsy, led by scientists at RCSI (Royal College of Surgeons in Ireland), has identified a new approach to drug therapy to prevent seizures in patients who have a drug-resistant form of ...

Some psychotic disorders may be induced by drugs designed to combat effects of epilepsy

August 9, 2016
Today Brain publishes a new study indicating that antiepileptic drugs designed to reduce seizures, may also induce psychotic disorders in some patients.

Study finds novel compound switches off epilepsy development

January 28, 2015
Researchers at the LSU Health New Orleans Neuroscience Center of Excellence have found that a novel compound they discovered helps curtail the onset and progression of temporal lobe epilepsy. The finding, which may contribute ...

Fatal uncoupling in the epileptic brain

March 18, 2015
Epilepsy is a very prevalent neurological disorder. Approximately one-third of patients are resistant to currently available therapies. A team of researchers under the guidance of the Institute of Cellular Neurosciences at ...

Recommended for you

New technique helps uncover changes in ALS neurons

June 22, 2018
Northwestern Medicine scientists have discovered that some neurons affected by amyotrophic lateral sclerosis (ALS) display hypo-excitability, using a new method to measure electrical activity in cells, according to a study ...

Broken shuttle may interfere with learning in major brain disorders

June 22, 2018
Unable to carry signals based on sights and sounds to the genes that record memories, a broken shuttle protein may hinder learning in patients with intellectual disability, schizophrenia, and autism.

Watching stem cells repair spinal cord in real time

June 22, 2018
Monash University researchers have restored movement and regenerated nerves using stem cells in zebra fish where the spinal cord is severely damaged.

Scientists discover fundamental rule of brain plasticity

June 21, 2018
Our brains are famously flexible, or "plastic," because neurons can do new things by forging new or stronger connections with other neurons. But if some connections strengthen, neuroscientists have reasoned, neurons must ...

Waking up is hard to do: Prefrontal cortex implicated in consciousness

June 21, 2018
Philosophers have pondered the nature of consciousness for thousands of years. In the 21st century, the debate over how the brain gives rise to our everyday experience continues to puzzle scientists. To help, researchers ...

Researchers find mechanism behind choosing alcohol over healthy rewards

June 21, 2018
A new study links molecular changes in the brain to behaviours that are central in addiction, such as choosing a drug over alternative rewards. The researchers have developed a method in which rats learn to get an alcohol ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.