Scientists reveal role for lysosome transport in Alzheimer's disease progression

August 7, 2017
In the brains of mice with Alzheimer's disease, decreased levels of JIP3 (right) induce the formation of larger amyloid plaques (red) and increased numbers of swollen axons filled with lysosomes (green). Credit: Gowrishankar et al., 2017

Researchers from Yale University School of Medicine have discovered that defects in the transport of lysosomes within neurons promote the buildup of protein aggregates in the brains of mice with Alzheimer's disease. The study, which will be published August 7 in The Journal of Cell Biology (JCB), suggests that developing ways to restore lysosome transport could represent a new therapeutic approach to treating the neurodegenerative disorder.

Alzheimer's disease is the sixth leading cause of death in the United States, with over 5 million Americans currently estimated to be living with the disorder. A characteristic feature of the disease is the formation of inside the brain. The plaques consist of extracellular aggregates of a toxic protein fragment called β-amyloid surrounded by numerous swollen axons, the parts of that conduct electric impulses to other nerve cells.

These axonal swellings are packed with lysosomes, cellular garbage disposal units that degrade old or damaged components of the cell. In neurons, lysosomes are thought to "mature" as they are transported from the ends of axons to the neuronal cell body, gradually acquiring the ability to degrade their cargo. The lysosomes that get stuck and accumulate inside the axonal swellings associated with amyloid plaques fail to properly mature, but how these lysosomes contribute to the development of Alzheimer's disease is unclear. One possibility is that they promote the buildup of β-amyloid because some of the enzymes that generate β-amyloid by cleaving a protein called (APP) accumulate in the swellings with the immature lysosomes.

Shawn Ferguson and colleagues at Yale University School of Medicine investigated this possibility by impeding the transport of lysosomes in mouse neurons. The researchers found that neurons lacking a protein called JIP3 failed to transport lysosomes from axons to the cell body, leading to the accumulation of lysosomes in axonal swellings similar to those seen in Alzheimer's disease patients. The swellings also accumulated APP and two enzymes—called BACE1 and presenilin 2—that cleave it to generate β-amyloid. Neurons lacking JIP3 therefore generated increased amounts of β-amyloid.

Electron microscopy shows the accumulation of lysosomes in the swollen axon of a neuron lacking JIP3. Credit: Gowrishankar et al., 2017

The researchers then removed one copy of the gene encoding JIP3—halving the amount of JIP3 —from mice that were already prone to developing Alzheimer's disease. These animals produced more β-amyloid and formed larger amyloid plaques, surrounded by an increased number of swollen axons.

"Collectively, our results indicate that the axonal accumulations of lysosomes at amyloid plaques are not innocent bystanders but rather are important contributors to APP processing and amyloid plaque growth," Ferguson says.

Genetic and environmental factors that impede lysosomal transport may therefore contribute to the progression of Alzheimer's disease. For example, traumatic brain injuries, which are thought to be significant risk factors for Alzheimer's disease, are known to disrupt transport along axons and induce axonal swelling.

"The identification of other proteins that function alongside JIP3 in regulating the and maturation of lysosomes could ultimately lead to strategies to modulate the axonal abundance of lysosomes for therapeutic purposes," Ferguson says.

Explore further: Failure of cells' 'garbage disposal' system may contribute to Alzheimer's

More information: Journal of Cell Biology (2017). DOI: 10.1083/jcb.201612148

Related Stories

Failure of cells' 'garbage disposal' system may contribute to Alzheimer's

June 30, 2015
Lysosomes, the "garbage disposal" systems of cells, are found in great abundance near the amyloid plaques in the brain that are a hallmark of Alzheimer's disease. Scientists have long assumed that their presence was helpful—that ...

How blows to the head cause numerous small swellings along the length of neuronal axons

June 12, 2017
Researchers from The Ohio State University have discovered how blows to the head cause numerous small swellings along the length of neuronal axons. The study, "Polarity of varicosity initiation in central neuron mechanosensation," ...

Overactive scavenger cells may cause neurodegeneration in Alzheimer's

June 30, 2017
For the first time, researchers from the University of Zurich demonstrate a surprising effect of microglia, the scavenger cells of the brain: If these cells lack the TDP-43 protein, they not only remove Alzheimer's plaques, ...

Dysfunctional endosomes are early sign of neurodegeneration

April 11, 2016
Writing in the April 11 issue of the Journal of Clinical Investigation, researchers at University of California, San Diego School of Medicine say abnormalities in a protein that helps transport and sort materials inside cells ...

Structural analysis of relevant drug targets for Alzheimer's disease

June 12, 2017
Alzheimer's Disease (AD) is classified as a neurodegenerative non-curable disease that affects millions worldwide. Current drugs have side effects that are significant. In AD, the beta-amyloid precursor protein (β-APP) that ...

Hyperactive neurons may be culprit in Alzheimer's

January 13, 2016
A long-term reduction in neuronal activity reduces amyloid plaques associated with Alzheimer's disease, Yale University researchers have found. The study, using mouse models of Alzheimer's, found the opposite is also true—triggering ...

Recommended for you

Artificial intelligence predicts dementia before onset of symptoms

August 22, 2017
Imagine if doctors could determine, many years in advance, who is likely to develop dementia. Such prognostic capabilities would give patients and their families time to plan and manage treatment and care. Thanks to artificial ...

Chronic stress induces fatal organ dysfunctions via a new neural circuit

August 22, 2017
Hokkaido University researchers revealed that fatal gut failure in a multiple sclerosis (MS) mouse model under chronic stress is caused by a newly discovered nerve pathway. The findings could provide a new therapeutic strategy ...

Noninvasive eye scan could detect key signs of Alzheimer's years before patients show symptoms

August 17, 2017
Cedars-Sinai neuroscience investigators have found that Alzheimer's disease affects the retina—the back of the eye—similarly to the way it affects the brain. The study also revealed that an investigational, noninvasive ...

Could olfactory loss point to Alzheimer's disease?

August 16, 2017
By the time you start losing your memory, it's almost too late. That's because the damage to your brain associated with Alzheimer's disease (AD) may already have been going on for as long as twenty years. Which is why there ...

New Machine Learning program shows promise for early Alzheimer's diagnosis

August 15, 2017
A new machine learning program developed by researchers at Case Western Reserve University appears to outperform other methods for diagnosing Alzheimer's disease before symptoms begin to interfere with every day living, initial ...

Brain scan study adds to evidence that lower brain serotonin levels are linked to dementia

August 14, 2017
In a study looking at brain scans of people with mild loss of thought and memory ability, Johns Hopkins researchers report evidence of lower levels of the serotonin transporter—a natural brain chemical that regulates mood, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.