New test for screening of Duchenne muscular dystrophy in newborn babies

August 11, 2017 by Julia Short, Cardiff University

Researchers at Cardiff University and Cardiff and Vale University Health Board have developed a more reliable method of screening for Duchenne muscular dystrophy (DMD) in newborn babies.

In collaboration with biotechnology company PerkinElmer, they have developed a diagnostic kit that can accurately screen for the disorder by analysing neonatal dried blood spots.

Professor Ian Weeks, Dean of Clinical Innovation and Head of Cardiff University's School of Medicine, said: "The successful outcome of this study is an example of the impact that can be achieved through collaboration between academic, clinical and industry colleagues in developing improvements in human healthcare."

The new method screens for DMD by detecting an enzyme that is released into the blood when muscle fibres are damaged from the condition. Previous tests of this type were less accurate as they also detected the activity of other forms of this enzyme, two of which are also produced in high levels due to muscle trauma-related injuries, which can lead to false results during screening.

Dr Stuart J. Moat, Consultant Clinical Biochemist and Director of the Wales Newborn Screening Laboratory at the University Hospital of Wales, said: "We found that CK-MM can be reliably quantified in blood spots and believe that developing this CK-MM assay on a commercial immunoassay analyser would enable standardized, high-throughput screening for DMD."

DMD is the most fatal common genetic disorder diagnosed in childhood. The disorder gradually causes muscles to weaken, leading to an increasing level of disability and eventually premature death. DMD almost always affects boys, with around 100 boys born in the UK with the condition each year, and about 2,500 living with the condition in the UK at any one time.

The new screening method originated from research by Professor Ian Weeks from Cardiff University and Dr Stuart Moat of Cardiff and Vale University Health Board. When PerkinElmer joined the collaboration, the research was successfully adapted to an existing PerkinElmer analyser, allowing it to be translated into a routine test that could be used globally.

Linh Hoang, Vice President, Neonatal Screening, PerkinElmer, added: "As the global leader in newborn screening, we are pleased to collaborate on innovative research related to helping advance the processes for screening for rare disorders such as Duchenne.

"This is another step forward in giving children with this condition a better chance at improving their health."

PerkinElmer also collaborated with local parties to set up a pilot program in China. In Wisconsin a pilot study is being initiated to evaluate the potential applicability for the US.

Pat Furlong, President and CEO, Parent Project Muscular Dystrophy (PPMD), the largest and most comprehensive non-profit organization in the US focused on ending Duchenne, said: "PPMD is committed to paving a path forward for newborn screening for Duchenne in the United States. We are working closely with PerkinElmer to further effective testing methods that we believe will lead to advancements in research for early interventions and eventually treatments."

Nic Bungay, Director of Campaigns, Care and Information at Muscular Dystrophy UK, added: "This new test moves us closer to a definitive newborn screening test for Duchenne, which will give families more time to plan for the future. We are hopeful that the rapid improvements in testing will allow the rollout of a national programme in the coming years, which will allow for treatments to be delivered to the very young at the earliest possible stage."

Jeanette George, whose son Alex was diagnosed with Duchenne muscular dystrophy through the programme in Wales, said: "Having the choice to screen Alex was a positive thing for us. Knowing Alex has Duchenne has allowed us to plan ahead and to manage his symptoms. Alex gets assessed every six months, so any change in his wellbeing will be picked up immediately. I have also been given the opportunity to make the decision to change the direction of my career and to spend more time at home with my son."

The new research 'Characterization of a Blood Spot Creatine Kinase Skeletal Muscle Isoform Immunoassay for High-Throughput Newborn Screening of Duchenne Muscular Dystrophy' is published in the journal Clinical Chemistry.

Explore further: Gene transfer corrects severe muscle defects in mice with Duchenne muscular dystrophy

More information: Stuart J. Moat et al. Characterization of a Blood Spot Creatine Kinase Skeletal Muscle Isoform Immunoassay for High-Throughput Newborn Screening of Duchenne Muscular Dystrophy, Clinical Chemistry (2017). DOI: 10.1373/clinchem.2016.268425

Related Stories

Gene transfer corrects severe muscle defects in mice with Duchenne muscular dystrophy

July 27, 2017
Duchenne muscular dystrophy is a rapidly progressive disease that causes whole-body muscle weakness and atrophy due to deficiency in a protein called dystrophin. Researchers at the University of Missouri, National Center ...

New target may slow disease progression in Duchenne muscular dystrophy

September 12, 2016
Duchenne muscular dystrophy is a chronic disease causing severe muscle degeneration that is ultimately fatal. As the disease progresses, muscle precursor cells lose the ability to create new musclar tissue, leading to faster ...

Microdystrophin restores muscle strength in Duchenne muscular dystrophy

July 25, 2017
Researchers from Genethon, the AFM-Telethon laboratory, Inserm (UMR) and the Royal Holloway University of London demonstrated the efficacy of an innovative gene therapy in the treatment of Duchenne muscular dystrophy. Indeed, ...

Docs: Heart device might be breakthrough for muscular dystrophy

October 17, 2012
(HealthDay)—A man with Duchenne muscular dystrophy who received a device to help his heart's left ventricle pump blood throughout his body could represent a breakthrough in the treatment of the disease, according to his ...

Cancer drug shows promise for treating Duchenne muscular dystrophy

January 6, 2016
A drug commonly used to treat leukaemia is showing potential as a treatment that could slow the progression of the muscle-wasting condition, Duchenne muscular dystrophy.

Recommended for you

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

The HLF gene protects blood stem cells by maintaining them in a resting state

January 17, 2018
The HLF gene is necessary for maintaining blood stem cells in a resting state, which is crucial for ensuring normal blood production. This has been shown by a new research study from Lund University in Sweden published in ...

Magnetically applied MicroRNAs could one day help relieve constipation

January 17, 2018
Constipation is an underestimated and debilitating medical issue related to the opioid epidemic. As a growing concern, researchers look to new tools to help patients with this side effect of opioid use and aging.

Researchers devise decoy molecule to block pain where it starts

January 16, 2018
For anyone who has accidentally injured themselves, Dr. Zachary Campbell not only sympathizes, he's developing new ways to blunt pain.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.