Testicular macrophages are guardians of fertility

August 11, 2017, CNRS
Cross section of newborn mouse's testis (Ø = 20 µm), where we can see the seminiferous tubules (red) surrounded by macrophages (green). Confocal micrograph. Credit: Noushine Mossadegh-Keller and Sébastien Mailfert / CIML

The origin, development, and characteristics of two types of testicular macrophage have been described by a CNRS team at the Centre d'Immunologie de Marseille-Luminy (CNRS / INSERM / Aix-Marseille University). To elucidate the nature of these immune cells, the researchers used a novel cell tracing method. Their findings were published on August 7, 2017, in the Journal of Experimental Medicine, and are of fundamental importance. They may help understand certain kinds of infertility in men and find new treatments for them.

From the start of life, an individual's immune system learns to distinguish self—that is, native —from other, potentially pathogenic cells. But in males, as sperm only appear at puberty, they may be mistaken for foreign cells by certain elements of the immune system. Testicular are special that rush to the defense of sperm. By releasing specific molecules, these guardians of fertility prevent other immune system agents from entering the testes.

Macrophages not only migrate to sites of infection and phagocytose pathogens, but also modulate immune system activity to ensure proper organ function and regeneration. They may arise from either embryonic progenitors or in adults. Research with mice has enabled the team of Michael Sieweke from the Centre d'Immunologie de Marseille-Luminy (CNRS / INSERM / Aix-Marseille University) to describe both testicular macrophage populations in depth.

The testis is divided into two compartments. One kind of testicular macrophage is found in the interstitial spaces, where testosterone-producing Leydig cells are also located. These interstitial macrophages are of embryonic origin: they are present from the beginning of the individual's life. The other kind is peritubular—that is, located on the surface of the seminiferous tubules that house sperm cell precursors. Each macrophage population has distinctive cellular markers.

The researchers used a new cell tracing method to follow the movement of peritubular macrophages from the bone marrow to the testes. They discovered that these macrophages only appear two weeks after the mice are born, which corresponds to the pubescent stage in human males. Surprisingly, once they have been established in the testes, macrophages of both populations remain there for the rest of their long lives. Sieweke's team will next focus their research efforts on the relationships between macrophages, sperm, and testosterone production, which may yield innovative treatments for certain kinds of male infertility.

Explore further: New study reveals how specialized cells help each other survive during times of stress

More information: Noushin Mossadegh-Keller et al. Developmental origin and maintenance of distinct testicular macrophage populations, The Journal of Experimental Medicine (2017). DOI: 10.1084/jem.20170829

Related Stories

New study reveals how specialized cells help each other survive during times of stress

November 3, 2015
Nov. 3, 2015 - A team led by scientists from the Florida campus of The Scripps Research Institute (TSRI) and the University of Pittsburgh has shown for the first time how one set of specialized cells survives under stress ...

Embryonic white blood cells needed in adulthood

October 17, 2016
Leukocytes which arise during the embryonic period regulate iron metabolism and the growth of the mammary gland in adults.

Identifying underlying causes of immune deficiencies that increase shingles risk

June 12, 2017
Early life infections with varicella zoster virus cause chickenpox, but the virus can remain dormant in the nervous system for decades and reactivate to cause herpes zoster, commonly known as shingles. Shingles is characterized ...

The surprising ability of blood stem cells to respond to emergencies

April 10, 2013
A research team of Inserm, CNRS and MDC lead by Michael Sieweke of the Centre d'Immunologie de Marseille Luminy (CNRS, INSERM, Aix Marseille Université) and Max Delbrück Centre for Molecular Medicine, Berlin-Buch, today ...

Recommended for you

More surprises about blood development—and a possible lead for making lymphocytes

January 22, 2018
Hematopoietic stem cells (HSCs) have long been regarded as the granddaddy of all blood cells. After we are born, these multipotent cells give rise to all our cell lineages: lymphoid, myeloid and erythroid cells. Hematologists ...

How metal scaffolds enhance the bone healing process

January 22, 2018
A new study shows how mechanically optimized constructs known as titanium-mesh scaffolds can optimize bone regeneration. The induction of bone regeneration is of importance when treating large bone defects. As demonstrated ...

Researchers illustrate how muscle growth inhibitor is activated, could aid in treating ALS

January 19, 2018
Researchers at the University of Cincinnati (UC) College of Medicine are part of an international team that has identified how the inactive or latent form of GDF8, a signaling protein also known as myostatin responsible for ...

Bioengineered soft microfibers improve T-cell production

January 18, 2018
T cells play a key role in the body's immune response against pathogens. As a new class of therapeutic approaches, T cells are being harnessed to fight cancer, promising more precise, longer-lasting mitigation than traditional, ...

Weight flux alters molecular profile, study finds

January 17, 2018
The human body undergoes dramatic changes during even short periods of weight gain and loss, according to a study led by researchers at the Stanford University School of Medicine.

Secrets of longevity protein revealed in new study

January 17, 2018
Named after the Greek goddess who spun the thread of life, Klotho proteins play an important role in the regulation of longevity and metabolism. In a recent Yale-led study, researchers revealed the three-dimensional structure ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.