Researchers discover the key to long-term memory

September 28, 2017 by Lawrence Goodman, Brandeis University
brain
Credit: public domain

After a 30-year quest, a Brandeis professor has discovered the molecule that stores long-term memories—it's called calcium/calmodulin dependent protein kinase, or CaMKII for short. The results were published on September 27 in the online edition of Neuron.

The breakthrough was achieved by the lab of John Lisman '66, the Zalman Abraham Kekst Chair in Neuroscience. The paper's first author is Tom Rossetti, a former undergraduate student of Lisman's now at the Weill Cornell Medicine Graduate School of Medical Sciences.

The discovery of the memory molecule resolves one of the oldest mysteries in neuroscience — how do our brains create and retain long-term memories? The finding also opens up radically new avenues of brain research. One day, by targeting CaMKII, we may be able to erase the memories that underlie trauma or drug addiction. Though it would raise serious ethical issues, it might also allow us to change our pasts by wiping out recollections of unhappy experiences.

CaMKII has also been found to play a role in Alzheimer's disease. It's never been clear if the illness deletes long-term memories or if they remain present, yet inaccessible to recall. A better understanding of CaMKII might resolve this.

"Just like it's unimaginable that we could understand cells if we didn't understand DNA, it's unimaginable that you can understand memory if you don't know what molecule stores it," Lisman says.

A memory may feel abstract or immaterial, but it is actually a biochemical process taking place in the brain. It involves neurons communicating with each other via the "wires" or synapses connecting them.

The pathway an electrochemical signal follows as it continually travels from neuron to synapse to neuron constitutes a memory. Whenever you have that memory, the same pathway gets activated. And the more it's activated, the more it becomes hardwired into the brain's circuitry. Eventually, it becomes a .

Activation also requires enzymes, that set off chemical reactions. The problem is that these enzymes don't exist for longer than a week. If a memory is to endure, it would seem that the enzymes would have to remain functioning for years or even decades.

Once the enzymes turn off, one would expect the memories to go with them. "This became a holy grail in neuroscience," Lisman says. "How can a molecule in your brain serve as a memory? How does Nature accomplish this?"

Starting in the mid-1980s, Lisman began suspecting that the enzyme CaMKII could be the solution to this conundrum.

When a CaMKII molecule stops working, it can be reactivated by another CaMKII. This means there are always lots of CaMKII molecules available to take the place of the CaMKII that's stopped working. In theory, Lisman reasoned, clusters of CaMKII could recruit replacement molecules without losing their overall function. This would mean the clusters would be, in effect, long-lasting even if their component molecules were constantly changing. "The amazing thing about CaMKII," Lisman says, "is that once you turn it on, it stays on more or less forever."

In this sense, CaMKII "stores" memory. It becomes the molecule whose permanence ensures the memory doesn't fade. Despite numerous other biochemical changes in the brain, it retains a record of what it needs to do to make a memory endure.

Lisman kept plugging away at his research on CaMKII until 2009, when it began to look like he'd been all wrong. Researchers at SUNY Downstate Medical Center claimed to show that another kinase enzyme called PKMzeta was the molecule that stored memories. It garnered international attention.

Lisman didn't give up, though, and over the next several years, further studies cast doubt on the SUNY Downstate team's findings.

To prove he was right, Lisman performed the same set of experiments with CaMKII as the SUNY Downstate group had with PKMzeta. He and his team placed a rat on a rotating platform. Every time the animal passed a designated location it got a small shock. Eventually the animal learned to avoid the shock zone by running in the opposite direction.

Lisman and his team then turned off the CaMKII molecules inside the rodent's brain. The rat ceased getting off the platform to avoid the shock. The animal's memory of the location of the shock zone had been erased.

In the model Lisman has developed, the caused by CaMKII work to strengthen the synaptic connections between neurons. Eventually those connections become permanent, creating a chain of neurons and synapses bonded to each other for good. It's that chain that becomes a long-term .

Explore further: In search of the memory molecule, a key protein complex discovered

More information: Tom Rossetti et al. Memory Erasure Experiments Indicate a Critical Role of CaMKII in Memory Storage, Neuron (2017). DOI: 10.1016/j.neuron.2017.09.010

Related Stories

In search of the memory molecule, a key protein complex discovered

June 23, 2011
Have a tough time remembering where you put your keys, learning a new language or recalling names at a cocktail party? New research from the Lisman Laboratory at Brandeis University points to a molecule that is central to ...

Precise mechanisms of a calcium-dependent kinase during the formation of new memories

May 17, 2017
Synaptic plasticity is the ability to strengthen or weaken the synapses or sites of communication between neurons. These changes are triggered by the activation of several different molecules inside small neuronal protrusions ...

Scientists develop light-controllable tool to study CaMKII kinetics in learning and memory

March 16, 2017
As we learn, the structure of individual neurons in our brains change to strengthen important connections and weaken less important ones, a process known as structural plasticity. In Ryohei Yasuda's laboratory at Max Planck ...

Brain scientists figure out how a protein crucial to learning and memory works

January 7, 2015
Researchers at Johns Hopkins have found out how a protein crucial to learning works: by removing a biochemical "clamp" that prevents connections between nerve cells in the brain from growing stronger. The finding moves neuroscientists ...

Recommended for you

Therapeutic antibodies protected nerve–muscle connections in a mouse model of Lou Gehrig's disease

February 20, 2018
Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, causes lethal respiratory paralysis within several years of diagnosis. There are no effective treatments to slow or halt this devastating disease. Mouse ...

Brain liquefaction after stroke is toxic to surviving brain: study

February 20, 2018
Scientists have known for years that the brain liquefies after a stroke. If cut off from blood and oxygen for a long enough period, a portion of the brain will die, slowly morphing from a hard, rubbery substance into liquid ...

Brain aging may begin earlier than expected

February 20, 2018
Physicists have devised a new method of investigating brain function, opening a new frontier in the diagnoses of neurodegenerative and ageing related diseases.

Every experience that the brain perceives is unique

February 20, 2018
Neuronal activity in the prefrontal cortex represents every experience as "novel." The neurons adapt their activity accordingly, even if the new experience is very similar to a previous one. That is the main finding of a ...

Brain immune system is key to recovery from motor neuron degeneration

February 20, 2018
The selective demise of motor neurons is the hallmark of Lou Gehrig's disease, also known as amyotrophic lateral sclerosis (ALS). Yet neurologists have suspected there are other types of brain cells involved in the progression ...

Electrical implant reduces 'invisible' symptoms of man's spinal cord injury

February 19, 2018
An experimental treatment that sends electrical currents through the spinal cord has improved "invisible" yet debilitating side effects for a B.C. man with a spinal cord injury.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.