Lab-grown bone cell breakthrough heralds new benefits for orthopaedics

September 12, 2017
Lab-grown bone cell breakthrough heralds new benefits for orthopaedics
Credit: University of Glasgow

Technology originally developed to detect gravitational waves is being used to generate tissue engineered bone grafts for future use in orthopaedic medicine, scientists report in a new paper published today.

The latest development in a technique known as 'nanokicking' has allowed scientists from the Universities of Glasgow, Strathclyde, the West of Scotland and Galway to grow three-dimensional samples of mineralised bone in the laboratory for the first time.

Bone is the second most grafted tissue after blood and is used in reconstructive, maxillofacial and orthopaedic surgeries. Currently, however, surgeons can only harvest limited amounts of living bone from the patient for use in graft, and bone from other donors is likely to be rejected by the body. Instead, surgeons must rely on inferior donor sources which contain no cells capable of regenerating bone, limiting the size of repairs they can effect.

In a paper in the journal Nature Biomedical Engineering, the researchers describe how they have used measurement technology, based on the sophisticated laser interferometer systems built for gravitational wave detection of astrophysical objects, to turn mesenchymal cells taken from human donors into in three dimensions. These 3D living , when implanted into patients in the future, will be able to repair or replace damaged sections of bone.

Mesenchymal stem cells, which are naturally produced by the human body in bone marrow, have the potential to differentiate into a range of specialised cell types such as bone, cartilage, ligament, tendon and muscle. Nanokicking subjects cells to ultra-precise, nanoscale vibrations while they are suspended inside collagen gels. The process of nanokicking turns the cells in the gels into a 'bone putty' that has potential to be used to heal bone fractures and fill bone where there is a gap. Using patients' own mesenchymal means surgeons will be able to prevent the problem of rejection, and can bridge larger gaps in bone.

Matthew Dalby, professor of cell engineering at the University of Glasgow, is one of the lead authors of the paper.

Professor Dalby said: "This is an exciting step forward for nanokicking, and it takes us one step further towards making the technique available for use in medical therapies. We are especially excited by these developments as much of the work we're doing now is funded by Sir Bobby Charlton's landmine charity Find a Better Way, which help individuals and communities heal from the devastating impact of landmines and other explosive remnants of war.

"Now that we have advanced the process to the point where it's readily reproducible and affordable, we will begin our first human trials around three years from now in the NHS along with the Scottish National Blood Transfusion Service and reconstructive and orthopaedic surgeons in Glasgow."

Find A Better Way CEO Lou McGrath said: "Producing synthetic, off-the-shelf bone tissue will potentially transform the lives of untold numbers of civilian landmine blast survivors around the world. Find A Better Way is delighted to be funding this project - it is a perfect match for Sir Bobby's dream of devising new solutions for one of the world's most intractable set of problems."

The Find A Better Way project at the University of Glasgow is led by professor of bioengineering Manuel Salmeron-Sanchez. In the Find a Better Way project, the team will combine the bone putty with large 3D printed scaffolds to fill even larger bone defects.

Prof Salmeron-Sanchez recently visited Cambodia to meet local people who have suffered landmine-related injuries. He added: "For many people who have lost legs in landmine accidents, the difference between being confined to a wheelchair and being able to use a prosthesis could be only a few centimetres of bone".

Professor Dalby said: "In partnership with Find A Better Way, we have already proven the effectiveness of our scaffolds in veterinary medicine, by helping to grow new bone to save the leg of a dog who would otherwise have had to have it amputated. Combining bone putty and mechanically strong scaffolds will allow us to address large bone deficits in humans in the future."

Some of the technology which underpins the nanokicking technique was originally developed by astrophysicists working on the search for gravitational waves, ripples in spacetime caused by massive events such as the collision of black holes.

Stuart Reid, Professor of Biomedical Engineering at the University of Strathclyde, and formerly at the University of the West of Scotland, said: "Having spent 15 years working in astrophysics and with the Laser Interferometer Gravitational-Wave Observatory (LIGO), it is amazing to see technology arising that could revolutionise key aspects of tissue engineering and regenerative medicine. The team is hard at work to get the technology ready for the first human trials, and to get devices into other labs around the UK and further afield."

The nanokick bioreactors developed by the researchers are currently being further tested in a network of laboratories across the UK. Since have the potential to differentiate into numerous other types of cell in addition to , the researchers expect that other clinically relevant applications of nanokicking will be discovered in partner labs in the future.

The team's paper, titled 'Stimulation of 3D osteogenesis by using a nanovibrational bioreactor', is published in Nature Biomedical Engineering.

Explore further: Nanokicking stem cells to open for new generation of orthopaedics

More information: 'Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor', Nature Biomedical Engineering (2017)

Related Stories

Nanokicking stem cells to open for new generation of orthopaedics

April 5, 2013
(Medical Xpress)—New research has shown that it is possible to grow new bone by "nanokicking" stem cells 1,000 times per second using high frequency vibrations.

Blood marker may predict postmenopausal women's risk of bone fractures

August 16, 2017
In a study published in the Journal of Bone and Mineral Research, blood tests that detect fragments of a protein secreted by bone cells helped to predict fracture risk in postmenopausal women, independently of bone mineral ...

Growing new bone for more effective injury repair

March 9, 2017
Broken bones do not always repair fully, especially after major trauma such as a car accident. Complications can occur when the bone is broken in several places, the blood flow is reduced or infection sets in. Patients can ...

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Researchers find infectious prions in Creutzfeldt-Jakob disease patient skin

November 22, 2017
Creutzfeldt-Jakob disease (CJD)—the human equivalent of mad cow disease—is caused by rogue, misfolded protein aggregates termed prions, which are infectious and cause fatal damages in the patient's brain. CJD patients ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

Cinnamon turns up the heat on fat cells

November 21, 2017
New research from the University of Michigan Life Sciences Institute has determined how a common holiday spice—cinnamon—might be enlisted in the fight against obesity.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.