'Missing link' explains how viruses trigger immunity

September 12, 2017
Credit: CC0 Public Domain

A discovery by Melbourne researchers has solved a longstanding mystery of how viruses trigger protective immunity within our body.

The research team demonstrated a protein called SIDT2 was crucial for cells to detect viral components in their environment, and initiate an to reduce the virus' spread.

As well as being an important part of the intricate 'arms race' between viruses and our immune system, the finding could inform better approaches to delivering a promising new class of therapeutics.

The study was led by Dr Tan Nguyen, Dr Ken Pang, Associate Professor Seth Masters and Professor Ian Wicks at the Walter and Eliza Hall Institute, together with Dr Michelle Tate at the Hudson Institute of Medical Research, and Professor Craig Hunter at Harvard School, US. The research was published today in the journal Immunity.

During a viral infection, RNA - a genetic material similar to DNA - is released into the environment around the infected cells. Dr Nguyen said the team showed that SIDT2 allowed viral RNA to be shuttled between compartments within cells, allowing it to reach the proteins that trigger anti-viral immunity.

"This RNA is in a 'double-stranded' form, called 'dsRNA', that is not normally found in our body. Human cells have evolved ways to detect dsRNA as a warning sign of an active viral infection and, in this way, dsRNA acts as an important trigger for cells to mount an anti-viral immune response.

"Cells constantly survey their environment by 'swallowing' small samples of their environment into compartments called endosomes. The enigma was that no one knew how the dsRNA escaped the endosome to reach the cytoplasm, where it can be detected by the cell." Dr Nguyen said.

The team showed that SIDT2 was the crucial missing link needed to transport dsRNA out of endosomes, and enable an immune response to be launched.

Viruses have many strategies to prevent an infected cell from alerting the immune system to their presence, Dr Pang said. "Intriguingly, we showed that SIDT2 is critical for uninfected 'bystander' cells to detect viral RNA in their environment," Dr Pang said. "This means bystanders can trigger before they even encounter the itself.

"Viruses have evolved many ways to switch off the immune response, allowing them to spread, while humans have evolved counter measures to allow a rapid and protective immune response that contains the viral infection. SIDT2 is helping humans in the 'arms race' between viruses and their human hosts."

The research may also have future implications for a new class of therapeutics based on dsRNA.

"For more than a decade there have been attempts to use modified dsRNA to switch off genes that cause disease - an approach called RNA interference," Dr Pang said.

"While there have been many clinical trials utilising RNA interference, delivering RNA into cells has been a huge challenge and the lack of effective delivery has meant that these trials have all ultimately failed.

"Now that we know SIDT2 is important in trafficking double-stranded RNA into , future RNA-based therapeutics can hopefully be designed to maximise their transport by SIDT2," Dr Pang said.

Explore further: Dendritic cells 'divide and conquer' to elude viral infection while promoting immunity

More information: Immunity (2017). DOI: 10.1016/j.immuni.2017.08.007

Related Stories

Dendritic cells 'divide and conquer' to elude viral infection while promoting immunity

July 7, 2017
A research team led by Jackson Laboratory (JAX) Professor Karolina Palucka, M.D., Ph.D., in collaboration with a research team at Institut Curie in France led by Dr. Nicolas Manel, have addressed a long-standing puzzle of ...

Who goes there? Novel complex senses viral infection

June 23, 2011
Double-stranded (ds) RNA viruses are a diverse group of viruses that include rotaviruses, a common cause of gastroenteritis. The ability of the immune system to detect and destroy viruses is critical for human health and ...

What is the role of double-stranded RNA in antiviral host defense systems?

May 14, 2013
Animals, insects, and plants use a variety of sensing mechanisms to detect invading pathogens such as viruses. One complex and effective antiviral defense system they share is based on recognition of double-stranded RNA (dsRNA), ...

Scientists discover critical anti-viral role of biological molecule

January 26, 2017
Scientists have discovered that a biological molecule important in cell growth (STAT3) is also critical in protecting us against infection - so much so that we would be unable to fight the common flu virus without it. Their ...

Recommended for you

Discovery of potent parasite protein may lead to new therapeutic options for inflammatory bowel conditions

November 24, 2017
A single protein from a worm parasite may one day offer new therapeutic options for treating inflammatory bowel diseases like Crohn's or Ulcerative Colitis, that avoid the potentially serious side effects of current immunosuppressant ...

Druglike molecules produced by gut bacteria can affect gut, immune health

November 23, 2017
Stanford researchers found that manipulating the gut microbe Clostridium sporogenes changed levels of molecules in the bloodstreams of mice and, in turn, affected their health.

Study explores whole-body immunity

November 21, 2017
Over the next few months, millions of people will receive vaccinations in the hope of staving off the flu—and the fever, pain, and congestion that come with it.

Drug could cut transplant rejection

November 21, 2017
A diabetes drug currently undergoing development could be repurposed to help end transplant rejection, without the side-effects of current immunosuppressive drugs, according to new research by Queen Mary University of London ...

Atopic eczema—one size does not fit all

November 21, 2017
Researchers from the UK and Netherlands have identified five distinct subgroups of eczema, a finding that helps explain how the condition can affect people at different stages of their lives.

Breast milk found to protect against food allergy

November 20, 2017
Eating allergenic foods during pregnancy can protect your child from food allergies, especially if you breastfeed, suggests new research from Boston Children's Hospital. The study, published online today in the Journal of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.