Magnetic cellular Legos for the regenerative medicine of the future

September 13, 2017, CNRS
The magnetic stretcher: this all-in-one system can both form and mechanically stimulate an aggregate of embryonic stem cells. The two micromagnets, one of which is mobile, frame the resulting embryonic body, and cyclical stimulation can be adapted to the type of tissue being sought. Credit: Claire Wilhelm / Laboratoire Matière et systèmes complexes (CNRS/Université Paris Diderot).

By incorporating magnetic nanoparticles in cells and developing a system using miniaturized magnets, researchers at the Laboratoire Matière et Systèmes Complexes (CNRS/Université Paris Diderot) and collaborators have created cellular magnetic Legos. They were able to aggregate cells using only magnets and without an external supporting matrix. The cells then formed a tissue that can be deformed at will. This approach, which is detailed in Nature Communications, could prove to be a powerful tool for biophysical studies, as well as the regenerative medicine of tomorrow.

Nanotechnology has quickly swept across the medical field with unprecedented solutions at the furthest limits of current treatments, thereby becoming central to diagnosis and therapy, notably for the regeneration of tissue. A current challenge for is to create a cohesive and organized cellular assembly without using an external supporting matrix. This is a particularly substantial challenge when it involves synthesizing thick and/or large-sized tissue, or when these tissues must be stimulated like their in vivo counterparts (such as or cartilage) in order to improve their functionality.

The researchers met this challenge by using to assemble, organize and stimulate them. Cells, which are the building blocks of tissue, are thus magnetized in advance through the incorporation of , thus becoming true cellular magnetic Legos that can be moved and stacked using external magnets. In this new system, which acts as a magnetic tissue stretcher, the magnetized cells are trapped on a micromagnet, before a second, mobile magnet traps the aggregate formed by the cells. The movement of the two magnets can stretch or compress the resulting tissue at will.

Researchers first used to test their system. They began by showing that the incorporation of nanoparticles had no impact on either the functioning of the stem cell or its capacity for differentiation. These functional magnetic stem were then tested in the stretcher, in which they remarkably differentiated toward cardiac cell precursors when stimulation produced "magnetic beating" that imitated the contraction of the heart. These results demonstrate the role that purely mechanical factors can play in cell differentiation.

This "all-in-one" approach, which makes it possible to build and manipulate tissue within the same system, could thus prove to be a powerful tool both for biophysical studies and tissue engineering.

Explore further: An attractive solution for heart repair

More information: Vicard Du et al, A 3D magnetic tissue stretcher for remote mechanical control of embryonic stem cell differentiation, Nature Communications (2017). DOI: 10.1038/s41467-017-00543-2

Related Stories

An attractive solution for heart repair

August 15, 2014
Stem cell therapy is a promising option for repairing heart tissue damaged by heart attack. However, the main obstacle to cardiac stem cell therapy also happens to be pretty difficult to get around – and that's the fact ...

Researchers engineer 3-D hydrogels for tissue-specific cartilage repair

July 26, 2017
Unlike the one-size-fits-all, homogeneous approach to tissue engineering for cartilage replacement, a new study reports the ability to encapsulate cartilage-forming chondrocytes and mesenchymal stem cells in 3D hydrogels ...

Recommended for you

New compound shown to be as effective as FDA-approved drugs against life-threatening infections

June 15, 2018
Purdue University researchers have identified  a new compound that in preliminary testing has shown itself to be as effective as antibiotics approved by the Food and Drug Administration to treat life-threatening infections ...

Foods combining fats and carbohydrates more rewarding than foods with just fats or carbs

June 14, 2018
Researchers show that the reward center of the brain values foods high in both fat and carbohydrates—i.e., many processed foods—more than foods containing only fat or only carbs. A study of 206 adults, to appear June ...

3-D imaging and computer modeling capture breast duct development

June 14, 2018
Working with hundreds of time-lapse videos of mouse tissue, a team of biologists joined up with civil engineers to create what is believed to be the first 3-D computer model to show precisely how the tiny tubes that funnel ...

Beating cancer at its own game with a Trojan horse telomerase

June 13, 2018
Telomerase is a reverse transcriptase that uses an RNA template to synthesize telomeres. These repeat sequences bind special proteins that fold the ends of chromosomes back onto themselves to create a stable cap. When this ...

Turning the tables on the cholera pathogen

June 13, 2018
Recent cholera outbreaks in regions that are ravaged by war, struck by natural disasters, or simply lack basic sanitation, such as Yemen or Haiti, are making the development of new and more effective interventions a near-term ...

Troves from a search for new biomarkers: blood-borne RNA

June 12, 2018
It's the critical first step in treating everything from strokes to cancer: a timely and accurate diagnosis. Today, doctors often rely on biomarkers, such as cardiac troponin, the protein that appears in the blood after a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.