Natural molecule appears to shut off cancer cells' energy source

September 14, 2017
Electron microscopic image of a single human lymphocyte. Credit: Dr. Triche National Cancer Institute

The Warburg Effect describes a phenomenon in which cancer cells voraciously consume glucose for energy—something scientists have long known, yet have had little success exploiting as a way to stunt tumor growth.

Now researchers at Duke Cancer Institute have not only untangled an unusual wiring system that cancer use for , but also identified a natural compound that appears to selectively shut down this system in laboratory studies.

"The Warburg Effect has been known for decades, but the underlying mechanisms are not well understood," said Jason Locasale, assistant professor in the Department of Pharmacology & Cancer Biology at Duke and senior author of a study published Sept. 14 in the journal Cell Metabolism. "We started with the idea that if you understand how it works, you should be better able to control it, and we think we might have some insight on that, as well."

Locasale and colleagues, including lead author Maria Liberti, studied cancer cells to determine how their changes so dramatically from that of , which use oxygen to break down sugar. Cancer cells, instead, use fermentation, which is less efficient and therefore uses more sugar.

The researchers found particular points where carbohydrate metabolism is controlled differently in cancer cells undergoing the Warburg Effect, and they homed in on an enzyme, identified as GAPDH, that controls the rate at which glucose is processed in cancer cells.

And while the Warburg Effect is strong in many cancers, it's absent or weaker in others. By measuring the GAPDH enzyme, the Duke team was able to develop a predictive model to measure how extensively cancer cells are under the influence of the Warburg Effect. Where the is strongest, the tumors could potentially be vulnerable to a therapy that targets the process.

"We've seen with genetics that cancers can be targeted based on whether certain mutations are present, and it could be that selectively targeting tumors based on their metabolism could have a similar impact," Liberti said.

Armed with their findings, the researchers then scoured the literature to see if there were any known compounds that might block the GAPDH enzyme. One molecule called koningic acid, or KA, seemed to have potential. It was discovered 30 years as part of a search to find drugs that lower cholesterol. That quest led to statins, and KA was abandoned.

The molecule is produced by a sugar-eating fungus that colonizes sugar-rich environments such as sweet potatoes. The fungus generates KA to ward off bacteria that might try stealing its sugar source. Suspecting that KA might be a natural molecule that targets organisms or systems involved in accelerated glucose metabolism, the researchers tested the molecule in and mouse models.

They found that KA does, indeed, selectively inhibit the GAPDH enzyme, curbing the ravenous glucose consumption in tumors undergoing the Warburg Effect and leaving normal cells alone.

Locasale said their findings warrant further study, notably to determine whether KA's effects can be reproduced in additional animal and cell studies and whether other drug-like molecules might work along the same energy pathway.

"These findings not only show that KA's efficacy is linked to the quantitative extent of the Warburg Effect, but that this also provides a therapeutic window," Locasale said. "This could provide another way to attack beyond the genetic makeup of the tumor. That's encouraging."

Explore further: Computer model reveals cancer's energy source

Related Stories

Computer model reveals cancer's energy source

August 1, 2014
(Medical Xpress)—A computer model study reveals – for the first time – details of an energy-creating process vital and unique to cancer cells. The research holds promise for new interventions and for personalizing cancer ...

PGK1 protein promotes brain tumor formation and cancer metabolism

March 3, 2016
PGK1, a glycolytic enzyme, has been found to play a role in coordinating cellular processes crucial to cancer metabolism and brain tumor formation, according to results published in today's online issue of Molecular Cell. ...

Natural defense mechanism preventing cancer at the earliest stage

May 15, 2017
A new study shows cells in the initial stage of cancer change their metabolism before getting eliminated by the surrounding normal cells, providing a novel target for developing cancer prevention drugs.

Scientists identify method of action for common chemotherapy drugs

June 15, 2016
A study by scientists at Duke Health is providing insight into how certain commonly-used chemotherapy drugs work, potentially opening new ways to enhance the benefits of treatment for cancer patients.

Scientists surprised to find that amino acids, not sugar, supply most building blocks for tumor cells

March 7, 2016
Cancer cells are notorious for their ability to divide uncontrollably and generate hordes of new tumor cells. Most of the fuel consumed by these rapidly proliferating cells is glucose, a type of sugar.

Scientists develop potential new class of cancer drugs in lab

June 26, 2015
In research published in Cancer Cell, Thomas Burris, Ph.D., chair of pharmacology and physiology at Saint Louis University, has, for the first time, found a way to stop cancer cell growth by targeting the Warburg Effect, ...

Recommended for you

Researchers unravel novel mechanism by which tumors grow resistant to radiotherapy

November 23, 2017
A Ludwig Cancer Research study has uncovered a key mechanism by which tumors develop resistance to radiation therapy and shown how such resistance might be overcome with drugs that are currently under development. The discovery ...

African Americans face highest risk for multiple myeloma yet underrepresented in research

November 23, 2017
Though African-American men are three times more likely to be diagnosed with multiple myeloma, a type of blood cancer, most scientific research on the disease has been based on people of European descent, according to a study ...

Encouraging oxygen's assault on iron may offer new way to kill lung cancer cells

November 22, 2017
Blocking the action of a key protein frees oxygen to damage iron-dependent proteins in lung and breast cancer cells, slowing their growth and making them easier to kill. This is the implication of a study led by researchers ...

One-size treatment for blood cancer probably doesn't fit all, researchers say

November 22, 2017
Though African-American men are three times more likely to be diagnosed with a blood cancer called multiple myeloma, most scientific research on the disease has been based on people of European descent, according to a study ...

One in four U.S. seniors with cancer has had it before

November 22, 2017
(HealthDay)—For a quarter of American seniors, a cancer diagnosis signals the return of an old foe, new research shows.

Combination immunotherapy targets cancer resistance

November 22, 2017
Cancer immunotherapy drugs have had notable but limited success because in many cases, tumors develop resistance to treatment. But researchers at Yale and Stanford have identified an experimental antibody that overcomes this ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.