Snail fever progression linked to nitric oxide production

September 14, 2017, University of Salford

Bilharzia, caused by a parasitic worm found in freshwater called Schistosoma, infects around 200 million people globally and its advance can lead to death, especially in children in developing countries.

But the parasite's growth can be impeded by nitric oxide, an immune system chemical, produced naturally in healthy humans and animals, according to a study by a team of researchers from China, the UK and the USA published in the journal Proceedings of the National Academy of Sciences.

Geoff Hide, professor of parasitology at the University of Salford, working with Professor Zhao-Rong Lun reached their conclusions after study of a rat strain that cannot make nitric oxide.

"This strain of rat is highly susceptible to infection and the severe pathology caused by the parasite. When we return nitric oxide levels to normal in these rats, they recover their natural resistance to the parasite."

The study describes how oxide blocks growth of the parasite. When it is in the body, the parasite releases eggs into the liver, intestine and other organs causing growths known as granulomas. These granulomas cause the severe pathology that cause disease and even death. This study shows that blocks growth of the reproductive organs of the parasite, it cannot then produce eggs, so granulomas do not form and then no disease effects are seen.

Nitric - a natural gas related to laughing gas - cannot be administered to humans, highlighting the vital role of a strong immune system.

"Treatment for tropical diseases are most commonly considered to be vaccinations and other post-infection medicines, but it is also vitally important that we think about therapies which encourage people's immune systems to produce NO".

Bilharzia is found predominantly in Africa, Asia and South America and is transmitted by a water-dwelling snail. The parasite is released from the snail and contaminates water. Humans acquire the parasite by skin contact with contaminated water.

Explore further: Blood vessels are not designed to fight infection

More information: Jia Shen et al. Nitric oxide blocks the development of the human parasite Schistosoma japonicum, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1708578114

Related Stories

Blood vessels are not designed to fight infection

July 10, 2017
Osaka University researchers show endothelial cells are vulnerable to bacterial infection because they lack certain immune machinery common in other cells.

Sun effects on skin reveal eczema therapy clues

June 19, 2017
Exposure to sunlight releases a compound from the skin that can alleviate symptoms of eczema, research has found.

New research offers the potential of new treatments for toxoplasma-induced pneumonia and cystic fibrosis

April 29, 2015
The research has discovered a link between a vital pumping system that does not function correctly in people with cystic fibrosis and the parasite Toxoplasma.

Breakthrough in the study of Autoimmune Disease

June 3, 2011
Diseases of the immune system such as multiple sclerosis, rheumatoid arthritis and psoriasis could be treated by a gas produced naturally by the body, scientists at the University have found.

Recommended for you

Creation of synthetic horsepox virus could lead to more effective smallpox vaccine

January 19, 2018
UAlberta researchers created a new synthetic virus that could lead to the development of a more effective vaccine against smallpox. The discovery demonstrates how techniques based on the use of synthetic DNA can be used to ...

Study ends debate over role of steroids in treating septic shock

January 19, 2018
The results from the largest ever study of septic shock could improve treatment for critically ill patients and save health systems worldwide hundreds of millions of dollars each year.

New approach could help curtail hospitalizations due to influenza infection

January 18, 2018
More than 700,000 Americans were hospitalized due to illnesses associated with the seasonal flu during the 2014-15 flu season, according to federal estimates. A radical new approach to vaccine development at UCLA may help ...

Zika virus damages placenta, which may explain malformed babies

January 18, 2018
Though the Zika virus is widely known for a recent outbreak that caused children to be born with microencephaly, or having a small head, and other malformations, scientists have struggled to explain how the virus affects ...

Certain flu virus mutations may compensate for fitness costs of other mutations

January 18, 2018
Seasonal flu viruses continually undergo mutations that help them evade the human immune system, but some of these mutations can reduce a virus's potency. According to new research published in PLOS Pathogens, certain mutations ...

Study reveals how MRSA infection compromises lymphatic function

January 17, 2018
Infections of the skin or other soft tissues with the hard-to-treat MRSA (methicillin-resistant Staphylococcus aureus) bacteria appear to permanently compromise the lymphatic system, which is crucial to immune system function. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.