Cells that die with a bang contribute to high death rate in bloodstream infections

October 10, 2017
Credit: CC0 Public Domain

Cells lining blood vessels in the lungs that are exposed to bacterial toxins don't die easy, according to a new study led by researchers at the University of Illinois at Chicago College of Medicine.

When these come into contact with called lipopolysaccharides, an explosive form of cell death known as pyroptosis occurs. Pyroptosis is initiated by an enzyme called caspase-11 in mice, and caspases 4 and 5 in humans. Without these enzymes, pyroptosis cannot occur, making these caspases attractive targets for drugs that can prevent tissue damage caused by infections.

"There are multiple ways a cell can die," said Dr. Jalees Rehman, associate professor of medicine and pharmacology in the UIC College of Medicine and co-lead author on the paper published in the Journal of Clinical Investigation. "In pyroptosis, go out with a bang."

Pyroptosis has only been documented in a few cell types, most notably in immune cells called macrophages. In pyroptosis, an external trigger activates caspases inside the cell, which in turn activate pro-inflammatory molecules called cytokines. As the cell membrane breaks down, the cytokines burst from the cell and signal to nearby immune cells to flock to the area to neutralize germs and prevent further damage. The word 'pyroptosis' is derived from the Greek word for fire.

Pyroptosis likely evolved as a useful alarm signal to amplify the inflammatory response by releasing potent cytokines in the setting of an infection. While the burst of cytokines help signal to nearby immune cells that a strong response is needed, in some severe infections cytokines released by pyroptosis can cause excessive tissue injury.

During a severe , bacteria that release lipopolysaccharides can enter the bloodstream. These infections are especially dangerous if they get into the of the lungs. When large numbers of cells lining the blood vessels in the lungs come into contact with the bacterial toxins, the blood vessels become leaky and allow fluid to enter the lungs. This severe complication of bloodstream infections is called . Gas exchange in the lungs is severely compromised during acute injury, which is one reason for the high death rates of affected patients.

"Our work shows that pyroptosis of that line blood vessels may be one of the reasons why bacterial infections can cause such severe injury to the lung in some patients," said Asrar Malik, Schweppe Family distinguished professor and head of pharmacology in the UIC College of Medicine and co-lead author on the paper.

Approximately 200,000 people in the U.S. experience acute lung injury each year, and up to 30 to 40 percent of all cases can be fatal. The current standard treatment is supportive care, such as artificial ventilation.

The researchers observed that mice injected with lipopolysaccharide or bacteria that release lipopolysaccharides had very high mortality rates except for mice where the gene for caspase 11 had been deleted in endothelial cells. These mice had much higher survival rates and less fluid in their lungs.

"Caspase-11 is clearly required for the activation of pyroptosis in the endothelial cells of mice," Rehman said. "Drugs that block this pathway or the corresponding human caspases 4 and 5 could help prevent or reduce the extent of lung injury."

Explore further: Researchers uncover cellular mechanism that protects lungs during severe infections

More information: Kwong Tai Cheng et al. Caspase-11–mediated endothelial pyroptosis underlies endotoxemia-induced lung injury, Journal of Clinical Investigation (2017). DOI: 10.1172/JCI94495

Related Stories

Researchers uncover cellular mechanism that protects lungs during severe infections

January 9, 2015
Researchers at the University of Illinois at Chicago have discovered a novel molecular mechanism that tightens the bonds between the cells that line blood vessels to form a leak-proof barrier. The mechanism presents a potential ...

A new angle for countering severe bacterial infections and sepsis

July 6, 2016
Bacterial infections that don't respond to antibiotics are of rising concern, as is sepsis—the immune system's last-ditch, failed attack on infection that ends up being lethal itself. Reporting online in Nature on July ...

Immune cells outsmart bacterial infection by dying, study shows

May 5, 2014
A new study led by scientists at the University of Pennsylvania School of Veterinary Medicine has painted a clearer picture of the delicate arms race between the human immune system and a pathogen that seeks to infect and ...

Blood T cells are resistant to HIV's primary death pathway

October 14, 2015
Scientists from the Gladstone Institutes have discovered that blood-derived T cells are resistant to the chief cause of cell death in HIV infection. Instead, it is T cells in the lymphoid tissues that are most susceptible ...

Mice found able to ward off fungal lung infections by causing fungus to kill itself

September 8, 2017
(Medical Xpress)—A team of researchers from the U.S., Germany and Israel has found that mice are able to ward off fungal lung infections because their immune systems cause fungal spores to die. In their paper published ...

Recommended for you

Scientists find key to regenerating blood vessels

November 23, 2017
A new study led by researchers at Sanford Burnham Prebys Medical Discovery Institute (SBP) identifies a signaling pathway that is essential for angiogenesis, the growth of new blood vessels from pre-existing vessels. The ...

Surprising roles for muscle in tissue regeneration, study finds

November 22, 2017
A team of researchers at Whitehead has illuminated an important role for different subtypes of muscle cells in orchestrating the process of tissue regeneration. In a paper published in the November 22 issue of Nature, they ...

Study reveals new mechanisms of cell death in neurodegenerative disorders

November 22, 2017
Researchers at King's College London have discovered new mechanisms of cell death, which may be involved in debilitating neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease.

How rogue immune cells cross the blood-brain barrier to cause multiple sclerosis

November 21, 2017
Drug designers working on therapeutics against multiple sclerosis should focus on blocking two distinct ways rogue immune cells attack healthy neurons, according to a new study in the journal Cell Reports.

New simple test could help cystic fibrosis patients find best treatment

November 21, 2017
Several cutting-edge treatments have become available in recent years to correct the debilitating chronic lung congestion associated with cystic fibrosis. While the new drugs are life-changing for some patients, they do not ...

Researchers discover key signaling protein for muscle growth

November 20, 2017
Researchers at the University of Louisville have discovered the importance of a well-known protein, myeloid differentiation primary response gene 88 (MyD88), in the development and regeneration of muscles. Ashok Kumar, Ph.D., ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.