How to turn damaged heart tissue back into healthy heart muscle—new details emerge

October 25, 2017, University of North Carolina Health Care
Induced cardiomyocytes (iCMs) that Li Qian's lab produced in experiments turning scar tissue into healthy heart muscle. Credit: Qian Lab, UNC School of Medicine

Reversing scar tissue after a heart attack to create healthy heart muscle: this would be a game-changer in the field of cardiology and regenerative medicine. In the lab, scientists have shown it's possible to change fibroblasts (scar tissue cells) into cardiomyocytes (heart muscle cells), but sorting out the details of how this happens hasn't been easy, and using this kind of approach in clinics or even other basic research projects has proven elusive.

Now, in a new study published today in Nature, UNC researchers report a breakthrough. They have used single cell RNA sequencing technology in combination with mathematical modeling and genetic and chemical approaches to delineate the step-by-step molecular changes that occur during cell fate conversion from fibroblast to cardiomyocyte. The scientists, led by Li Qian, PhD, assistant professor of pathology and laboratory medicine at the UNC School of Medicine, not only successfully reconstructed the routes a single cell could take in this process but also identified underlying molecular pathways and key regulators important for the transformation from one cell type to another.

"We used direct cardiac reprogramming as an example in this study," said Qian, the senior author of this paper and member of the UNC McAllister Heart Institute, "But the pipelines and methods we've established here can be used in any other reprogramming process, and potentially other unsynchronized and heterogeneous biological processes."

When we are babies, embryonic stem throughout our bodies gradually change into a variety of highly specialized cell types, such as neurons, blood cells, and . For a long time, scientists thought these specific cell types were terminal; they could not change again or be reverted back to a state between embryonic and their final differentiated stage. Recent discoveries, though, show it's possible to revert terminally differentiated somatic cells to a pluripotent state - a kind of "master" cell that can self-produce and potentially turn into any kind of cell in the body. Scientists have also figured out how to convert one kind of differentiated somatic cell type into another without detouring through the pluripotent stage or the original progenitor stage. Such findings shifted the paradigm of cellular hierarchy and revolutionized stem cell research and the field of regenerative medicine. Yet, figuring out how to study the specifics of these processes to leverage them for clinical and basic research has been difficult.

Direct cardiac reprogramming, a promising approach for cardiac regeneration and disease modeling that the Qian Lab has pioneered and fine-tuned in the past several years, involves direct conversion of cardiac non-myocytes into induced cardiomyocytes (iCMs) that closely resemble endogenous CMs. Like any reprogramming process, the many cells that are being reprogrammed don't do so at the same time.

"It's an 'asynchronous' process," Qian said. "Conversions occur at different intervals. So, at any stage, the cell population always contains unconverted, partially reprogrammed, and fully reprogrammed cells. Therefore, is 'heterogeneous,' which makes it difficult to study using traditional approaches."

In this study, by using microfluidic single-cell RNA sequencing techniques, Qian's lab addressed the two main issues of 'asynchronous' programming and heterogeneous cell populations. They analyzed global transcriptome changes during fate conversion from fibroblasts to iCMs.

Using mathematical algorithms, they identified molecularly distinct subpopulations of cells along the reprogramming pipeline. Then they re-constructed routes of iCM formation based on simulation and experimental validation. These routes provided them an unprecedented high-resolution roadmap for further studies on the mechanisms of cell conversion.

"Some of what we found is clinically important," Qian said, "For example, we know that after a , cardiac fibroblasts around the injured area are immediately activated and become highly proliferative but this proliferative capacity decreases over time. How to take advantage of the varied cell cycle status of fibroblasts over the progression of a heart attack and its aftermath would certainly broaden the application of cellular reprogramming for patients and optimize outcomes."

How to turn damaged heart tissue back into healthy heart muscle: New details emerge
Cardiofibroblasts that Li Qian's lab changed into iCMs -- induced cardiomyocytes that compose healthy heart muscle. Credit: Qian Lab, UNC School of Medicine

Qian added, "We demonstrated the routes between cell proliferation and . We also showed experimental evidence that altering the cell cycle statuses of starting fibroblasts would change the outcomes of new myocyte formation."

Her team discovered that the molecular features of subpopulations of fibroblasts were differentially suppressed during reprogramming, suggesting that the susceptibility of cells to be reprogrammed varies.

Interestingly, this susceptibility coincides with the timing of cardiomyocyte differentiation during heart development. The signatures in the intermediate populations that seem to appear earlier in heart development were more resistant to the alterations. This suggests that the recent epigenetic memories of cells might be more easily erased, and so the fibroblast subpopulations with such epigenetic features are more easily converted into cardiomyocytes.

"Manipulating epigenetic memories - not just changing their current epigenetic status - could be crucial for altering a cell's fate for therapeutic value," Qian said.

With further analysis of global gene expression changes during reprogramming, researchers identified an unexpected down-regulation of factors involved in mRNA processing and splicing.

"This is a big surprise to us," Qian said. "We found that some of the basic cell machinery is dramatically changed, like the machinery for protein production, transportation and degradation, and as we document in detail - mRNA splicing machinery."

The team continued with detailed functional analysis of the top candidate - the splicing factor called Ptbp1. Evidence suggests it as a critical barrier to the acquisition of cardiomyocyte-specific splicing patterns in fibroblasts. Qian's research showed that Ptbp1 depletion promoted the formation of more iCMs.

"The new knowledge learned from our mechanistic studies of how a single splicing factor regulates the fate conversion from fibroblast to cardiomyocyte is really a bonus to us," Qian continued. "Without the unbiased nature of this approach, we would not gain such fresh, valuable information about the reprogramming process. And that's the beauty of our platform."

Additional quantitative analysis revealed a strong correlation between the expression of each reprogramming factor and the progress of individual cells through the , and led to the discovery of new surface markers for enrichment of iCMs.

Qian said, "I believe the interdisciplinary approaches in this paper are very powerful. They helped us identify previously unrecognized functions or mechanisms, as well as better understand the nature of a cell and the progression of a disease. Ultimately, this approach could benefit not only heart disease patients, but also patients with cancers, diabetes, neurological diseases, and other conditions. We are very excited about the road ahead."

Explore further: Post-heart attack: How can scar tissue be turned back into healthy heart muscle?

More information: Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte, Nature (2017).

Related Stories

Post-heart attack: How can scar tissue be turned back into healthy heart muscle?

September 26, 2017
Heart disease continues to be the leading cause of death worldwide, partly due to limited therapeutic options and the heart's inability to regenerate healthy cells called cardiomyocytes after heart attacks. Scientists at ...

Fibroblasts reprogrammed into functioning heart cells in mice

April 23, 2012
(HealthDay) -- Cells that normally form scar tissue after a heart attack can be reprogrammed into functional heart cells in mice, according to an experimental study published online April 18 in Nature.

'Broken' heart breakthrough: Researchers reprogram cells to better battle heart failure

March 3, 2016
Patients with heart failure often have a buildup of scar tissue that leads to a gradual loss of heart function. In a new study published today in the journal Cell Stem Cell, researchers from the University of North Carolina ...

How Gata4 helps mend a broken heart

August 15, 2017
During a heart attack, blood stops flowing into the heart; starved for oxygen, part of the heart muscle dies. The heart muscle does not regenerate; instead it replaces dead tissue with scars made of cells called fibroblasts ...

Recommended for you

Can stem cells help a diseased heart heal itself? Researchers achieve important milestone

December 14, 2018
A team of Rutgers scientists, including Leonard Lee and Shaohua Li, have taken an important step toward the goal of making diseased hearts heal themselves—a new model that would reduce the need for bypass surgery, heart ...

Your weight history may predict your heart failure risk

December 12, 2018
In a medical records analysis of information gathered on more than 6,000 people, Johns Hopkins Medicine researchers conclude that simply asking older adult patients about their weight history at ages 20 and 40 could provide ...

New understanding of mysterious 'hereditary swelling'

December 12, 2018
For the first time ever, biomedical researchers from Aarhus University, Denmark, report cellular defects that lead to a rare disease, hereditary angioedema (HAE), in which patients experience recurrent episodes of swelling ...

Age is the biggest risk for heart disease, but lifestyle and meds have impact

December 12, 2018
Of all the risk factors for heart disease, age is the strongest predictor of potential trouble.

Higher risk of heart attack on Christmas Eve

December 12, 2018
The risk of heart attack peaks at around 10pm on Christmas Eve, particularly for older and sicker people, most likely due to heightened emotional stress, finds a Swedish study in this week's Christmas issue of The BMJ.

Researchers have found that incidence of heart failure was around two-fold higher in people with diabetes

December 11, 2018
Researchers have found that incidence of heart failure was around two-fold higher in people with diabetes.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 26, 2017
This sounds like a process with broad applications...... perhaps that could be applied to aging

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.