Mitochondrial DNA could predict risk for sudden cardiac death, heart disease

October 11, 2017
Credit: CC0 Public Domain

Johns Hopkins researchers report that the level, or "copy number," of mitochondrial DNA—genetic information stored not in a cell's nucleus but in the body's energy-creating mitochondria—is a novel and distinct biomarker that is able to predict the risk of heart attacks and sudden cardiac deaths a decade or more before they happen. In the future, testing blood for this genetic information could not only help physicians more accurately predict a risk for life-threatening cardiac events, but also inform decisions to begin—or avoid—treatment with statins and other drugs.

The two studies, one on published in JAMA Cardiology on Oct. 11 and the other focused on sudden and published in the European Heart Journal on June 30, revealed that including the mitochondrial DNA copy number improved the accuracy of currently used clinical measures for a patient's risk of a deadly cardiac event. In short, the lower the copy number, the higher the risk.

"We believe the mitochondrial DNA copy number is a novel risk factor for cardiovascular disease, in addition to known predictors like LDL, total cholesterol and blood pressure, and it adds sensitivity and specificity to whether or not you should be taking a statin," says Dan Arking, Ph.D., associate professor of medicine at the McKusick-Nathans Institute of Genetic Medicine and co-director of the Biological Mechanisms Core of the Older Americans Independence Center at the Johns Hopkins University School of Medicine.

To study the role of the mitochondrial DNA copy number as an effective predictor of cardiovascular disease, Arking and his team collected genetic data from 21,870 participants compiled through some of the nation's largest and longest-running cardiovascular study groups: the Atherosclerosis Risk in Communities Study (ARIC), The Cardiovascular Health Study and the Multi-Ethnic Study of Atherosclerosis.

The researchers measured the mitochondrial DNA levels relative to nuclear DNA levels, and then added that value as a risk factor to the American College of Cardiology/American Heart Association's Heart Risk Calculator.

The calculator, currently considered the gold standard for predicting disease risk, takes into account a patient's total cholesterol, blood pressure, family history, smoking history, weight and other factors to predict a 10-year risk of suffering a life-threatening cardiac event.

"The general recommendation is that if your risk is above 7.5 percent, you should start taking preventative medications," says Arking.

At the end of the study, Arking and his team accurately predicted that six people who would not have been recommended treatment under the standard calculation went on to have a life-threatening cardiac event and 139 people who would have been recommended treatment did not have any cardiac events.

"Essentially, our study told us that you can probably safely take 139 people off of the drug who would have been prescribed it and that six people who weren't recommended the drug should really be on it," says Arking. "This is important because though statins are great drugs and they clearly lower the risk of heart disease, there are side effects and costs associated with taking them, including muscle pain, liver damage and neurological effects."

In addition to improving the predictive value of the Heart Risk Calculator, the second study adds evidence that the mitochondrial DNA copy number also appears to be predictive of sudden cardiac death.

Using similar methods as in the JAMA study, Arking and his team measured the mitochondrial DNA copy number of 11, 093 participants in the ARIC study. They found that over the course of 20.4 years, 361 participants suffered sudden cardiac death. After adjusting for other risk factors, the researchers determined that participants with relatively low mitochondrial DNA copy numbers were at the highest risk for sudden cardiac death.

"Having mitochondrial DNA as a potential biomarker is very useful because we can use it to develop tools that accurately identify the groups that are at risk," says Arking.

However, Arking cautions that further research is needed before mitochondrial DNA can be clinically used to predict risk for sudden cardiac death: "Our measurements were all relative within the study group. In order to build a clinical test that works for everyone, we need a standard for what constitutes a 'healthy' amount of mitochondrial DNA and that standard may vary across different populations and age groups."

Sudden cardiac death occurs when the heart suddenly and unexpectedly stops beating and is usually fatal if not treated within minutes. Researchers predict that 200,000-450,000 people suffer an event in the U.S. annually. It's not a blockage like a traditional heart attack - though it is often triggered by one - but a malfunction in the electrical signals that allow the heart to beat normally. For this reason, it's often difficult or impossible to predict.

"Essentially two out of every three people who experience show no symptoms that could have warned their physician of their risk," says Arking. "That is why our group fervently looked for genetic markers to identify those people at higher ."

Arking says researchers do not yet know what specific cellular responses and signals are responsible for changes in the mitochondrial DNA copy number. "It's a promising biomarker, but we need to learn how it is actually functioning to determine if it is causal," says Arking.

Levels of mitochondrial DNA have been implicated in many types of cancer as well as overall frailty and mortality. "We know that a lot of diseases correlate with each other, such as diabetes and arthrosclerosis," says Arking. "It would not surprise me if we found that these markers tie into many phenotypes. It seems that if you don't have enough mitochondria, a lot of bad things can happen."

Explore further: New genetic risk factor for sudden cardiac death identified

More information: Yiyi Zhang et al. Association between mitochondrial DNA copy number and sudden cardiac death: findings from the Atherosclerosis Risk in Communities study (ARIC), European Heart Journal (2017). DOI: 10.1093/eurheartj/ehx354

Related Stories

New genetic risk factor for sudden cardiac death identified

July 12, 2011
In a large and comprehensive investigation into the underlying causes of sudden cardiac death (SCD) – a surreptitious killer of hundreds of thousands annually in the United States – researchers have discovered a ...

Mitochondrial DNA levels in the blood may predict risk of developing kidney disease

January 21, 2016
The health of blood cells' energy-producing mitochondria may predict a person's risk of developing chronic kidney disease (CKD), according to a study appearing in an upcoming issue of the Journal of the American Society of ...

Men may face high lifetime risk of sudden cardiac death

June 29, 2016
About one in every nine men will experience sudden cardiac death, most before age 70, as well as about one in 30 women, according to research published in the Journal of the American Heart Association, the Open Access Journal ...

Deaths, cardiac arrest not rare in triathlon participants

September 19, 2017
(HealthDay)—The incidence of deaths or cardiac arrest is 1.74 per 100,000 USA Triathlon participants, according to a study published online Sept. 19 in the Annals of Internal Medicine.

Amount of mitochondrial DNA predicts frailty and mortality

December 16, 2014
New research from The Johns Hopkins University suggests that the amount of mitochondrial DNA (mtDNA) found in peoples' blood directly relates to how frail they are medically. This DNA may prove to be a useful predictor of ...

Estrogen levels tied to risk for sudden cardiac death in study

May 11, 2013
(HealthDay)—Higher levels of the hormone estrogen are associated with an increased risk of sudden cardiac death in men and women, a new study suggests.

Recommended for you

How genes and environment interact to raise risk of congenital heart defects

October 19, 2017
Infants of mothers with diabetes have a three- to five-fold increased risk of congenital heart defects. Such developmental defects are likely caused by a combination of genetic and environmental factors. However, the molecular ...

Mouse studies shed light on how protein controls heart failure

October 18, 2017
A new study on two specially bred strains of mice has illuminated how abnormal addition of the chemical phosphate to a specific heart muscle protein may sabotage the way the protein behaves in a cell, and may damage the way ...

Newborns with trisomy 13 or 18 benefit from heart surgery, study finds

October 18, 2017
Heart surgery significantly decreases in-hospital mortality among infants with either of two genetic disorders that cause severe physical and intellectual disabilities, according to a new study by a researcher at the Stanford ...

Saving hearts after heart attacks: Overexpression of a gene enhances repair of dead muscle

October 17, 2017
University of Alabama at Birmingham biomedical engineers report a significant advance in efforts to repair a damaged heart after a heart attack, using grafted heart-muscle cells to create a repair patch. The key was overexpressing ...

Physically active white men at high risk for plaque buildup in arteries

October 17, 2017
White men who exercise at high levels are 86 percent more likely than people who exercise at low levels to experience a buildup of plaque in the heart arteries by middle age, a new study suggests.

High blood pressure linked to common heart valve disorder

October 17, 2017
For the first time, a strong link has been established between high blood pressure and the most common heart valve disorder in high-income countries, by new research from The George Institute for Global Health at the University ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.