Neurobiologist studies how the brain learns to interpret what the body touches

October 6, 2017 by Darrin S. Joy, University of Southern California
Assistant Professor of Biological Sciences Andrew Hires is using optical methods to understand how the brain interprets and learns from touch signals. Image courtesy of Andrew Hires. Credit: University of Southern California

It's a touchy subject—literally. Samuel Andrew Hires, assistant professor of biological sciences, wants to know how the brain learns to understand what we're touching. Understanding how this works could one day be a boon for people who have suffered a stroke or spinal cord injury.

Hires recently received a five-year, $2.5 million New Innovator Award from the National Institutes of Health to advance the research. The award is the first of its kind obtained by a USC Dornsife researcher, and only the third overall for USC.

Glowing brain cells

Using technology he began developing while a postdoctoral associate at Howard Hughes Medical Institute's Janelia Research Campus in Ashburn, Va., Hires aims to map the in the that interpret touch sensation and learn from it.

"All of our actions require a constant communication between our body and our brain to coordinate them, and the messages are encoded by electrical signals," he said. "Signals coming from your body are translated and interpreted in the brain."

Hires wants to understand how those signals are represented in the brain. Which neurons and networks of neurons become active while learning what something feels like? And how do they organize themselves as part of that process?

To answer this, he genetically engineered mice so that neurons in their brains glow green when they're active. He then challenges the mice to learn the difference between two different shapes. The hitch, of course, is that the mice can't see the objects because they're in a dark box. They can only use their whiskers to make out the shapes.

"Mouse whiskers aren't like the ones dogs and cats have, or our whiskers," Hires said. In fact, mice use their whiskers much as we use our hands and fingers; they're the primary touch organ. "They brush their whiskers across objects actively like we sweep our fingers across a wall to find a light switch."

As the mice learn to judge the shapes, Hires analyzes which groups of neurons glow green in their brains. "It looks almost like a constellation or maybe a very dense Christmas tree of blinking," he said. The technology enables him to look at the activity patterns of thousands of neurons at a time or zoom in to the level of individual neurons.

"That gives us a much clearer and faster picture … that allows us to start understanding what the brain is actually doing in there," he said.

Combining this brain imagery with high-speed video of the mouse whiskers will allow Hires to correlate the mice's efforts to probe the shape with what is happening in their brains. This will paint a complete picture of how nerve signals from and those that control muscle interact, and how the brain translates and coordinates all of the information.

Though the research is in its earliest stages, the work one day could lead to methods of restoring touch and motor control to stroke and spinal cord injury patients. Nearly 800,000 people in the United States have a stroke each year and about 12,000 suffer a spinal cord injury.

"If we can understand the rules by which [brain] circuits organize, we may be able to coax them to do it using medicines or other methods." This could stimulate the brain to form the patterns normally seen during touch and motor control, effectively reinstating activity that's been felled by stroke or injury.

Future bionics?

Looking far into the future, Hires' work might one day even let amputees feel again using prosthetic devices.

In much the same way he engineered mouse to glow when active, it's possible to give neurons a protein that responds to light. The protein, called channelrhodopsin, is related to the light-sensitive receptors in the eye. Shining light on it activates the neuron.

If neurons have this light-reactive protein, and Hires has successfully mapped the and neural circuits that allow the brain to interpret and react appropriately to touch, then theoretically it is possible to fool the brain into "feeling." In fact, Hires has done this for mice, making them think they've touched something that isn't there or that an object is in a different position than it is.

Doing this for humans is a very long way off, but it's not out of the question. The distant future could see touch sensors in a prosthetic limb send signals to light-emitting hardware in the brain that then targets the appropriate neural circuits and activates them.

"This is, of course, science fiction at the moment," Hires said. "But it's good to dream. That's how ideas are born."

Explore further: A mouse's view of the world, seen through its whiskers

Related Stories

A mouse's view of the world, seen through its whiskers

June 28, 2017
Mice, unlike cats and dogs, are able to move their whiskers to map out their surroundings, much as humans use their fingers to build a 3D picture of a darkened room.

Study in mice identifies neurons that sense touch and motion

April 20, 2017
Working with genetically engineered mice—and especially their whiskers—Johns Hopkins researchers report they have identified a group of nerve cells in the skin responsible for what they call "active touch," a combination ...

Scientists use algorithm to peer through opaque brains

June 26, 2017
Trying to pinpoint signals from individual neurons within a block of brain tissue is like trying to count headlights in thick fog. A new algorithm, developed by researchers based at The Rockefeller University, brings this ...

Mechanisms behind sensory deficits in Parkinson's disease

May 18, 2017
Although Parkinson's disease is often associated with motor symptoms such as stiffness, poor balance and trembling, the first symptoms are often sensory and include a reduced sense of touch and smell. In a study on mice, ...

New brain circuit sheds light on development of voluntary movements

January 23, 2013
All parents know the infant milestones: turning over, learning to crawl, standing, and taking that first unassisted step. Achieving each accomplishment presumably requires the formation of new connections among subsets of ...

Glowing neurons reveal networked link between brain, whiskers

October 16, 2013
Human fingertips have several types of sensory neurons that are responsible for relaying touch signals to the central nervous system. Scientists have long believed these neurons followed a linear path to the brain with a ...

Recommended for you

Breast milk may be best for premature babies' brain development

September 21, 2018
Babies born before their due date show better brain development when fed breast milk rather than formula, a study has found.

Early warning sign of psychosis detected

September 21, 2018
Brains of people at risk of psychosis exhibit a pattern that can help predict whether they will go on to develop full-fledged schizophrenia, a new Yale-led study shows. The findings could help doctors begin early intervention ...

White matter repair and traumatic brain injury

September 20, 2018
Traumatic brain injury (TBI) is a leading cause of death and disability in the U.S., contributing to about 30 percent of all injury deaths, according to the CDC. TBI causes damage to both white and gray matter in the brain, ...

'Gut sense' is hardwired, not hormonal

September 20, 2018
If you've ever felt nauseous before an important presentation, or foggy after a big meal, then you know the power of the gut-brain connection.

Genomic dark matter activity connects Parkinson's and psychiatric diseases

September 20, 2018
Dopamine neurons are located in the midbrain, but their tendril-like axons can branch far into the higher cortical areas, influencing how we move and how we feel. New genetic evidence has revealed that these specialized cells ...

Gut branches of vagus nerve essential components of brain's reward and motivation system

September 20, 2018
A novel gut-to-brain neural circuit establishes the vagus nerve as an essential component of the brain system that regulates reward and motivation, according to research conducted at the Icahn School of Medicine at Mount ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.