Newly discovered microRNA regulates mobility of tumor cells

October 27, 2017, University of Basel
Epithelial breast cancer cells following treatment with an EMT activator: they adopt the properties of mesenchymal cells; in addition, individual cells break away from the cell cluster and migrate into the surrounding tissue. Blue: nucleus, green: paxillin (adhesion protein), red: actin (cytoskeleton). Credit: University of Basel, Department of Biomedicine

Cancer cells can reactivate a cellular process that is an essential part of embryonic development. This allows them to leave the primary tumor, penetrate the surrounding tissue and form metastases in peripheral organs. In the journal Nature Communications, researchers from the University of Basel's Department of Biomedicine provide an insight into the molecular networks that regulate this process.

During an embryo's development, epithelial cells can break away from the cell cluster, modify their cell type-specific properties, and migrate into other regions to form the desired structures there. This process, which is known as an epithelial–mesenchymal transition (EMT), is reversible and can also proceed in the direction from to (MET). It is repeated multiple times during and ultimately paves the way for the formation of organs in the human body.

Tumor cells can reactivate the program

Although this is a completely normal process during embryogenesis, it also plays an important role in the spread of within the body and in the formation of metastases. As a result, this cellular program has also attracted greater attention in the field of tumor research in recent years.

Tumor cells are able to reactivate the EMT/MET program. By doing so, they obtain characteristics of stem cells and develop increased resistance to not only classical but also state-of-the-art targeted cancer therapies.

An EMT also makes it easier for to break away from the , to penetrate into surrounding tissue and into blood vessels, to spread throughout the body and to form metastases in distant organs, which is ultimately responsible for the death of most cancer patients.

The research group, led by Professor Gerhard Christofori from the University of Basel's Department of Biomedicine, researches the molecular processes that regulate the cellular EMT program. By doing so, they aim to demonstrate new intervention strategies to combat the development of malignant tumors and the formation of metastases – such as in the case of breast cancer, one of the most common and malicious diseases in women.

Newly discovered microRNA inhibits EMT

In a study published in the latest edition of Nature Communications, the researchers focused specifically on microRNAs (miRNAs), a class of very short non-coding RNAs with a considerable effect on gene regulation. They identified a hitherto unknown microRNA, miR-1199-5p, that induces epithelial cell behavior and impedes the malignancy of tumor cells, as well as their potential to form secondary tumors.

In concrete terms, the newly discovered microRNA prevents the synthesis of a specific protein, the transcription factor Zeb1, which activates EMT/MET – but if it is missing, the EMT process is prevented. Zeb1 also suppresses the expression of miR1199-5p in what is known as a negative feedback loop, whereby the two molecules regulate one another reciprocally.

More and more often, molecular switches of this kind are being found within processes that cause to alter or lose their cell type-specific properties. They appear to be responsible for a rapid, reversible cellular response to extracellular stimuli.

In the future, these insights into the for regulating EMT/MET plasticity may allow the development of new strategies for the treatment of breast cancer.

Explore further: How a non-coding RNA encourages cancer growth and metastasis

More information: Maren Diepenbruck et al. miR-1199-5p and Zeb1 function in a double-negative feedback loop potentially coordinating EMT and tumour metastasis, Nature Communications (2017). DOI: 10.1038/s41467-017-01197-w

Related Stories

How a non-coding RNA encourages cancer growth and metastasis

August 21, 2017
A mechanism that pushes a certain gene to produce a non-coding form of RNA instead of its protein-coding alternative can promote the growth of cancer, report researchers at the Medical University of South Carolina (MUSC) ...

A new T-cell population for cancer immunotherapy

May 23, 2017
Scientists at the University of Basel in Switzerland have, for the first time, described a new T cell population that can recognize and kill tumor cells. The open access journal eLife has published the results.

Cancer metastasis: The unexpected perils of hypoxia

May 11, 2017
The low oxygen concentrations that prevail in many tumors enhance their propensity to metastasize to other tissues. Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich led by Professor Heiko Hermeking have now ...

New insights into mechanisms of breast cancer development and resistance to therapy

January 9, 2017
Why does breast cancer develop and how come certain patients are resistant to established therapies? Researchers from the University of Basel have gained new insights into the molecular processes in breast tissue. They identified ...

Why tumor cells leave home

June 11, 2013
(Medical Xpress)—Malignant cells can escape from primary tumors and colonize new sites in other tissues. In a new study, LMU researchers show how the transcription factor AP4 promotes the development of such metastatic ...

Recommended for you

Study tracks evolutionary transition to destructive cancer

February 23, 2018
Evolution describes how all living forms cope with challenges in their environment, as they struggle to persevere against formidable odds. Mutation and selective pressure—cornerstones of Darwin's theory—are the means ...

Researchers use a molecular Trojan horse to deliver chemotherapeutic drug to cancer cells

February 23, 2018
A research team at the University of California, Riverside has discovered a way for chemotherapy drug paclitaxel to target migrating, or circulating, cancer cells, which are responsible for the development of tumor metastases.

Lab-grown 'mini tumours' could personalise cancer treatment

February 23, 2018
Testing cancer drugs on miniature replicas of a patient's tumour could help doctors tailor treatment, according to new research.

An under-the-radar immune cell shows potential in fight against cancer

February 23, 2018
One of the rarest of immune cells, unknown to scientists a decade ago, might prove to be a potent weapon in stopping cancer from spreading in the body, according to new research from the University of British Columbia.

Putting black skin cancer to sleep—for good

February 22, 2018
An international research team has succeeded in stopping the growth of malignant melanoma by reactivating a protective mechanism that prevents tumor cells from dividing. The team used chemical agents to block the enzymes ...

Cancer risk associated with key epigenetic changes occurring through normal aging process

February 22, 2018
Some scientists have hypothesized that tumor-promoting changes in cells during cancer development—particularly an epigenetic change involving DNA methylation—arise from rogue cells escaping a natural cell deterioration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.