Pair of discoveries illuminate new paths to flu and anthrax treatments

October 17, 2017, University of California - San Diego
Mouse lung epithelial cells infected with influenza are marked by the expression of NS1 (magenta). These cells augment expression of the Hedgehog target gene, Patched-1 (green). Credit: UC San Diego

Two recent studies led by biologists at the University of California San Diego have set the research groundwork for new avenues to treat influenza and anthrax poisoning.

Published a month apart in PLOS Pathogens, the studies from Professor Ethan Bier's laboratory used a series of experiments to identify key pathways and mechanisms previously unknown or overlooked in the body's defenses.

The first study used fruit flies as an in vivo test system to reveal new evidence about the function of a key influenza protein called NS1, which has evolved to target molecular pathways in the host. Research led by Margery Smelkinson found that NS1 modulates the activitiy of a signaling cascade known as the Hedgehog pathway (so named because fruit fly larvae lacking the Hedgehog gene emerge hairless and resemble tiny hedgehogs).

"Margery's experiments showed that the NS1 protein can alter expression of Hedgehog target genes on its own, without other viral proteins," said Bier, professor and newly named holder of the Tata Chancellor's Endowed Professorship in Cell and Developmental Biology. "The clinical implications of this work are that we might be able use existing drugs that alter Hedgehog signaling to treat influenza infection," said Bier.

"It is remarkable that a defect caused by the influenza NS1 protein in Drosophila led to the discovery of a new role for the NS1 protein in influenza virus-induced pathogenesis," said study coauthor Robert Krug of the University of Texas at Austin. "Margery and Ethan never gave up and eventually overcame the skepticism expressed by other scientists."

The UC San Diego researchers set up collaborations to achieve their findings, including: Krug at the University of Texas at Austin, who generated the influenza virus mutant encoding the mutant NS1 ; and John Teijaro and Michael Oldstone at the Scripps Research Institute, who carried out mammalian pathogenesis studies with the wild-type and mutant influenza virus.

"Another important finding from this study is that we uncovered a mutant form of NS1 that accelerated lethality in flu-infected mice which was linked to stronger activation of Hedgehog signaling," said Smelkinson. "This suggests that reducing Hedgehog signaling during the course of the infection may reduce severity of symptoms. Some Hedgehog signaling reducing agents are currently on the market to treat specific types of cancers while others are in clinical trials. It would be interesting to see if any of these drugs would also be efficacious in treating the flu."

The second study (cover of the latest issue of PLOS Pathogens) describes new findings by Annabel Guichard and her colleagues that could open the door to much needed intervention for treating late-stage anthrax infection.

Anthrax poisonings, as well as cholera infections, work in part by disrupting the normal transport mechanisms of proteins. The researchers analyzed the processes by which proteins that normally bind cells together are blocked by an anthrax toxin named edema factor (EF). This mechanism halts the delivery of the "glue" for key cell sheets—blood vessels for anthrax and intestinal lining for cholera—which results in blood loss-induced shock (anthrax) and acute diarrhea (cholera).

"This study started with experiments in fruit flies, which helped us to identify new molecular pathways affected by these toxins," said Guichard. "It is striking to see how many pathological processes are conserved all the way from insects to humans."

Guichard and her colleagues further identified several molecular inhibitors critical to mediating these effects and tested them in mice with positive results.

"In principle, one could save people suffering from cutaneous late-stage anthrax infections and maybe treat a variety of other similar diseases," said Bier. "These two studies highlight the value of using an integrated multi-systems approach—including fruit flies, mice, and human cells—to discover mechanisms underlying disease processes."

Explore further: Blocking a protein in a critical signaling pathway could offer a new way to combat tumors

Related Stories

Blocking a protein in a critical signaling pathway could offer a new way to combat tumors

August 10, 2016
Cancer drugs that block a cell-signaling pathway called Hedgehog have shown promise in recent years in treating patients with skin cancer, leukemia and other types of tumors. But the available treatments mostly target the ...

Taste bud maintenance in mice requires Hedgehog signaling

November 28, 2016
Disruptions in the Hedgehog signaling pathway can interfere with taste bud maintenance in mice, potentially explaining why some cancer patients experience a loss of taste during treatment with Hedgehog-blocking drugs. Charlotte ...

Anthrax spores use RNA coat to mislead immune system

April 11, 2017
Researchers from Harvard Medical School have discovered that the body's immune system initially detects the presence of anthrax spores by recognizing RNA molecules that coat the spores' surface. But this prompts an unfavorable ...

Scientists find cause of facial widening defects

November 1, 2016
Widening across the forehead and nose occurs when loss of cilia at the surface of the cells disrupts internal signaling and causes two GLI proteins to stop repressing midfacial growth. Ching-Fang Chang and Samantha Brugmann ...

Key regulator of bone development identified

December 8, 2016
Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Recommended for you

Fighting a deadly parasite: Scientists devise a method to store Cryptosporidium, aiding vaccine research efforts

September 21, 2018
In May, just before one of the hottest summers on record, the U.S. Centers for Disease Control and Prevention issued a warning about diseases lurking in recreational water facilities like swimming pools and water playgrounds. ...

Study identifies stem cell that gives rise to new bone and cartilage in humans

September 20, 2018
A decade-long effort led by Stanford University School of Medicine scientists has been rewarded with the identification of the human skeletal stem cell.

Scientists grow human esophagus in lab

September 20, 2018
Scientists working to bioengineer the entire human gastrointestinal system in a laboratory now report using pluripotent stem cells to grow human esophageal organoids.

Researchers identify human skeletal stem cells

September 20, 2018
Human skeletal stem cells that become bone, cartilage, or stroma cells have been isolated from fetal and adult bones. This is the first time that skeletal stem cells, which had been observed in rodent models, have been identified ...

Scientists make significant discovery in the fight against drug-resistant tuberculosis

September 20, 2018
A team of scientists have identified a naturally occurring antibiotic that may help in the fight against drug-resistant Tuberculosis.

Anti-cancer drugs may hold key to overcoming antimalarial drug resistance

September 20, 2018
Scientists have found a way to boost the efficacy of the world's most powerful antimalarial drug with the help of chemotherapy medicines, according to new research published in the journal Nature Communications.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.