Scientists reverse advanced heart failure in an animal model

October 4, 2017, Baylor College of Medicine
Credit: CC0 Public Domain

Researchers have discovered a previously unrecognized healing capacity of the heart. In a mouse model, they were able to reverse severe heart failure by silencing the activity of Hippo, a signaling pathway that can prevent the regeneration of heart muscle. The study appears in the journal Nature.

"Heart failure remains the leading cause of mortality from heart disease. The best current treatment for this condition is implantation of a or a heart transplant, but the number of hearts available for transplant is limited," said corresponding author Dr. James Martin, professor and Vivian L. Smith Chair in Regenerative Medicine at Baylor College of Medicine and director of the Cardiomyocyte Renewal Lab at the Texas Heart Institute.

During a heart attack, blood stops flowing into the heart; starved for oxygen, part of the dies. The heart muscle does not regenerate; instead it replaces dead tissue with scars made of cells called fibroblasts that do not help the heart pump. The heart progressively weakens; most people who had a severe heart attack will develop heat failure.

"One of the interests of my lab is to develop ways to heal heart muscle by studying pathways involved in heart development and regeneration," Martin said. "In this study, we investigated the Hippo pathway, which is known from my lab's previous studies to prevent adult heart muscle cell proliferation and regeneration."

"When patients are in heart failure there is an increase in the activity of the Hippo pathway," said first author John Leach, a graduate student of molecular physiology and biophysics in the Martin lab. "This led us to think that if we could turn Hippo off, then we might be able to induce improvement in heart function."

Encouraging results

"We designed a to mimic the human condition of advanced ," Leach said. "Once we reproduced a severe stage of injury in the mouse heart, we inhibited the Hippo pathway. After six weeks we observed that the injured hearts had recovered their pumping function to the level of the control, healthy hearts."

The researchers think the effect of turning Hippo off is two-fold. On one side, it induces to proliferate and survive in the injured , and on the other side, it induces an alteration of the fibrosis. Further studies are going to be needed to elucidate the changes observed in fibrosis.

Explore further: Research reveals new insights into why the heart does not repair itself

More information: Hippo pathway deficiency reverses systolic heart failure after infarction, Nature (2017). DOI: 10.1038/nature24045

Related Stories

Research reveals new insights into why the heart does not repair itself

June 5, 2017
Heart muscle is one of the least renewable tissues in the body, which is one of the reasons that heart disease is the leading cause of death for both men and women in the United States, according to the Centers for Disease ...

How Gata4 helps mend a broken heart

August 15, 2017
During a heart attack, blood stops flowing into the heart; starved for oxygen, part of the heart muscle dies. The heart muscle does not regenerate; instead it replaces dead tissue with scars made of cells called fibroblasts ...

Metabolism switch signals end for healing hearts

September 19, 2017
Researchers have identified the process that shuts down the human heart's ability to heal itself, and are now searching for a drug to reverse it.

A pathway controlling inflammatory responses aids recovery after heart attack

February 6, 2017
After a heart attack, or myocardial infarction, a patient's long-term prognosis depends on the ability of the heart tissue to heal and remodel. Immune system activation and inflammatory responses that occur in the aftermath ...

Breakthrough in adult heart repair

November 19, 2013
Researchers from the Baylor College of Medicine and the Texas Heart Institute have discovered a new way to dramatically improve heart repair. The future goal is to use this knowledge to combat human cardiovascular disease ...

Stem Cell discovery refreshes the heart

August 7, 2017
Some people are better than others at recovering from a wounded heart, according to a new USC Stem Cell study published in Nature Genetics.

Recommended for you

Study examines the rise of plaque in arteries

May 25, 2018
The accumulation of cholesterol plaques in artery walls can lead to atherosclerosis, or the hardening of arteries that contributes to heart attacks and strokes. In a new study, Yale researchers investigate how plaque cells ...

Low-dose aspirin could help pregnant women with high blood pressure avoid a dangerous condition

May 25, 2018
A daily dose of aspirin could help pregnant women in the first stage of high blood pressure avoid a condition that puts both mother and baby in danger, according to a new study.

Study shows in-home therapy effective for stroke rehabilitation

May 24, 2018
In-home rehabilitation, using a telehealth system and supervised by licensed occupational/physical therapists, is an effective means of improving arm motor status in stroke survivors, according to findings presented by University ...

Surgery involving ultrasound energy found to treat high blood pressure

May 23, 2018
An operation that targets the nerves connected to the kidney has been found to significantly reduce blood pressure in patients with hypertension, according to the results of a clinical trial led in the UK by Queen Mary University ...

New guidelines mean 1 in 3 adults may need blood pressure meds

May 23, 2018
(HealthDay)—One out of every three U.S. adults has high blood pressure that should be treated with medication, under guidelines recently adopted by the two leading heart health associations.

To have or not to have... your left atrial appendage closed

May 22, 2018
Each year in the U.S., more than 300,000 people have heart surgery. To reduce risk of stroke for their patients, surgeons often will close the left atrial appendage, which is a small sac in the left side of the heart where ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.