Novel treatment causes cancer to self-destruct without affecting healthy cells

October 9, 2017
This image depicts the structure of the BAX protein (purple). The activator compound BTSA1 (orange) has bound to the active site of BAX (green), changing the shape of the BAX molecule at several points (shown in yellow, magenta and cyan). BAX, once in its final activated form, can home in on mitochondria and puncture their outer membranes, triggering apoptosis (cell death). Credit: Albert Einstein College of Medicine

Scientists at Albert Einstein College of Medicine have discovered the first compound that directly makes cancer cells commit suicide while sparing healthy cells. The new treatment approach, described in today's issue of Cancer Cell, was directed against acute myeloid leukemia (AML) cells but may also have potential for attacking other types of cancers.

"We're hopeful that the targeted we're developing will prove more effective than current anti-cancer therapies by directly causing to self-destruct," says Evripidis Gavathiotis, Ph.D., associate professor of biochemistry and of medicine and senior author of the study. "Ideally, our compounds would be combined with other treatments to kill cancer faster and more efficiently—and with fewer adverse effects, which are an all-too-common problem with standard chemotherapies."

AML accounts for nearly one-third of all new leukemia cases and kills more than 10,000 Americans each year. The survival rate for patients has remained at about 30 percent for several decades, so better treatments are urgently needed.

The newly discovered compound combats cancer by triggering apoptosis—an important process that rids the body of unwanted or malfunctioning cells. Apoptosis trims excess tissue during embryonic development, for example, and some chemotherapy drugs indirectly induce apoptosis by damaging DNA in cancer cells.

Apoptosis occurs when BAX—the "executioner protein" in cells—is activated by "pro-apoptotic" proteins in the cell. Once activated, BAX molecules home in on and punch lethal holes in mitochondria, the parts of cells that produce energy. But all too often, cancer cells manage to prevent BAX from killing them. They ensure their survival by producing copious amounts of "anti-apoptotic" proteins that suppress BAX and the proteins that activate it.

"Our novel compound revives suppressed BAX molecules in cancer cells by binding with high affinity to BAX's activation site," says Dr. Gavathiotis. "BAX can then swing into action, killing cancer cells while leaving unscathed."

Dr. Gavathiotis was the lead author of a 2008 paper in Nature that first described the structure and shape of BAX's activation site. He has since looked for small molecules that can activate BAX strongly enough to overcome cancer cells' resistance to apoptosis. His team initially used computers to screen more than one million compounds to reveal those with BAX-binding potential. The most promising 500 compounds—many of them newly synthesized by Dr. Gavathiotis' team—were then evaluated in the laboratory.

"A compound dubbed BTSA1 (short for BAX Trigger Site Activator 1) proved to be the most potent BAX activator, causing rapid and extensive apoptosis when added to several different human AML cell lines," says lead author Denis Reyna, M.S., a doctoral student in Dr. Gavathiotis' lab. The researchers next tested BTSA1 in blood samples from patients with high-risk AML. Strikingly, BTSA1 induced apoptosis in the patients' AML cells but did not affect patients' healthy blood-forming stem cells.

Finally, the researchers generated animal models of AML by grafting human AML cells into mice. BTSA1 was given to half the AML mice while the other half served as controls. On average, the BTSA1-treated mice survived significantly longer (55 days) than the control mice (40 days), with 43 percent of BTSA1-treated AML mice alive after 60 days and showing no signs of AML.

Importantly, the mice treated with BTSA1 showed no evidence of toxicity. "BTSA1 activates BAX and causes apoptosis in AML cells while sparing healthy cells and tissues—probably because the cancer cells are primed for apoptosis," says Dr. Gavathiotis. He notes that his study found that AML cells from patients contained significantly higher BAX levels compared with normal blood cells from healthy people. "With more BAX available in AML cells," he explained, "even low BTSA1 doses will trigger enough BAX activation to cause apoptotic death, while sparing healthy cells that contain low levels of BAX or none at all."

Plans call for Dr. Gavathiotis and his team to see whether BTSA1 will show similar effectiveness when tested on animal models of other types of .

Explore further: Scientists discover potential new improved way to kill cancer cells

More information: "Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia," Cancer Cell (2017).

Related Stories

Scientists discover potential new improved way to kill cancer cells

August 29, 2017
Scientists at the University of Glasgow have discovered a process to trigger the death of cancer cells that could be more effective than current methods.

Marked for destruction: Newly developed compound triggers cancer cell death

May 24, 2012
The BCL-2 protein family plays a large role in determining whether cancer cells survive in response to therapy or undergo a form of cell death known as apoptosis. Cells are pressured toward apoptosis by expression of pro-apoptotic ...

Scientists uncover potential trigger to kill cancer

May 26, 2016
Melbourne researchers have discovered a new way of triggering cell death, in a finding that could lead to drugs to treat cancer and autoimmune disease.

Study shows how an opportunistic microbe kills cancer cells

June 19, 2017
New study results show for the first time how dying cells ensure that they will be replaced, and suggests an ingenious, related new approach to shrinking cancerous tumors. A research team from Rush University Medical Center ...

Toxic peptide payload can be delivered exclusively to cancer cells

July 27, 2016
A drug that can kill cancer cells while leaving normal cells unharmed may be within our grasp thanks to research from A*STAR, although the approach is still several years away from clinical trials.

Recommended for you

Major study of genetics of breast cancer provides clues to mechanisms behind the disease

October 23, 2017
Seventy-two new genetic variants that contribute to the risk of developing breast cancer have been identified by a major international collaboration involving hundreds of researchers worldwide.

Proton therapy lowers treatment side effects in pediatric head and neck cancer patients

October 23, 2017
Pediatric patients with head and neck cancer can be treated with proton beam therapy (PBT) instead of traditional photon radiation, and it will result in similar outcomes with less impact on quality of life. Researchers from ...

New study shows how cells can be led down non-cancer path

October 23, 2017
As cells with a propensity for cancer break down food for energy, they reach a fork in the road: They can either continue energy production as healthy cells, or shift to the energy production profile of cancer cells. In a ...

Microbiologists contribute to possible new anti-TB treatment path

October 23, 2017
As part of the long effort to improve treatment of tuberculosis (TB), microbiologists led by Yasu Morita at the University of Massachusetts Amherst report that they have for the first time characterized a protein involved ...

Big Data shows how cancer interacts with its surroundings

October 23, 2017
By combining data from sources that at first seemed to be incompatible, UC San Francisco researchers have identified a molecular signature in tissue adjacent to tumors in eight of the most common cancers that suggests they ...

Symptom burden may increase hospital length of stay, readmission risk in advanced cancer

October 23, 2017
Hospitalized patients with advanced cancer who report more intense and numerous physical and psychological symptoms appear to be at risk for longer hospital stays and unplanned hospital readmissions. The report from a Massachusetts ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

jhnycmltly
not rated yet Oct 11, 2017
"Intensified, Liposomal Anthracycline-Based Chemo Regimen For Children With Leukemia May Offer High Survival Rates Without Added Heart Toxicity" "Iron Chelation by Clinically Relevant Anthracyclines"

Too much iron.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.